com.simiacryptus.mindseye.layers.java.BinaryEntropyActivationLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.DataSerializer;
import javax.annotation.Nonnull;
import java.util.Map;
/**
* The type Binary entropy activation layer.
*/
@SuppressWarnings("serial")
public final class BinaryEntropyActivationLayer extends SimpleActivationLayer {
/**
* Instantiates a new Binary entropy activation layer.
*/
public BinaryEntropyActivationLayer() {
}
/**
* Instantiates a new Binary entropy activation layer.
*
* @param id the id
*/
protected BinaryEntropyActivationLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json binary entropy activation layer.
*
* @param json the json
* @param rs the rs
* @return the binary entropy activation layer
*/
@Nonnull
@SuppressWarnings("unused")
public static BinaryEntropyActivationLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new BinaryEntropyActivationLayer(json);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
BinaryEntropyActivationLayer addRef() {
return (BinaryEntropyActivationLayer) super.addRef();
}
@Override
protected final void eval(final double x, final double[] results) {
final double minDeriv = 0;
final double d = 0 >= x ? Double.NaN : Math.log(x) - Math.log(1 - x);
final double f = 0 >= x || 1 <= x ? Double.POSITIVE_INFINITY : x * Math.log(x) + (1 - x) * Math.log(1 - x);
assert Double.isFinite(d);
assert minDeriv <= Math.abs(d);
results[0] = f;
results[1] = d;
}
}