com.simiacryptus.mindseye.layers.java.CrossDotMetaLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefList;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
/**
* The type Cross dot meta layer.
*/
@SuppressWarnings("serial")
public class CrossDotMetaLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(CrossDotMetaLayer.class);
/**
* Instantiates a new Cross dot meta layer.
*/
public CrossDotMetaLayer() {
}
/**
* Instantiates a new Cross dot meta layer.
*
* @param id the id
*/
protected CrossDotMetaLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json cross dot meta layer.
*
* @param json the json
* @param rs the rs
* @return the cross dot meta layer
*/
@Nonnull
@SuppressWarnings("unused")
public static CrossDotMetaLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new CrossDotMetaLayer(json);
}
@Nullable
@Override
public Result eval(@Nonnull final Result... inObj) {
final Result input = inObj[0].addRef();
RefUtil.freeRef(inObj);
final TensorList indata = input.getData();
final int itemCnt = indata.length();
final int dim = Tensor.length(indata.getDimensions());
@Nonnull final Tensor results = new Tensor(dim, dim);
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
if (i == j) {
continue;
}
double v = 0;
for (int k = 0; k < itemCnt; k++) {
Tensor tensor = indata.get(k);
@Nullable final double[] kk = tensor.getData();
tensor.freeRef();
v += kk[i] * kk[j];
}
results.set(new int[]{i, j}, v);
}
}
TensorArray data = new TensorArray(results);
boolean alive = input.isAlive();
Result.Accumulator accumulator = new Accumulator(indata, itemCnt, dim, input.getAccumulator(), input.isAlive());
input.freeRef();
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
CrossDotMetaLayer addRef() {
return (CrossDotMetaLayer) super.addRef();
}
private static class Accumulator extends Result.Accumulator {
private final TensorList indata;
private final int itemCnt;
private final int dim;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param indata the indata
* @param itemCnt the item cnt
* @param dim the dim
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(TensorList indata, int itemCnt, int dim, Result.Accumulator accumulator, boolean alive) {
this.indata = indata;
this.itemCnt = itemCnt;
this.dim = dim;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
if (alive) {
@Nullable final Tensor deltaTensor = delta.get(0);
@Nonnull final Tensor feedback[] = new Tensor[itemCnt];
RefArrays.parallelSetAll(RefUtil.addRef(feedback), i -> new Tensor(dim));
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
if (i == j) {
continue;
}
final double v = deltaTensor.get(i, j);
for (int k = 0; k < itemCnt; k++) {
Tensor tensor = indata.get(k);
@Nullable final double[] kk = tensor.getData();
tensor.freeRef();
feedback[k].add(i, v * kk[j]);
feedback[k].add(j, v * kk[i]);
}
}
}
deltaTensor.freeRef();
@Nonnull
TensorArray tensorArray = new TensorArray(RefUtil.addRef(feedback));
RefUtil.freeRef(feedback);
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, tensorArray);
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
indata.freeRef();
accumulator.freeRef();
}
}
}