com.simiacryptus.mindseye.layers.java.EntropyLossLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrayList;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Entropy loss layer.
*/
@SuppressWarnings("serial")
public class EntropyLossLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(EntropyLossLayer.class);
/**
* Instantiates a new Entropy loss layer.
*/
public EntropyLossLayer() {
}
/**
* Instantiates a new Entropy loss layer.
*
* @param id the id
*/
protected EntropyLossLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json entropy loss layer.
*
* @param json the json
* @param rs the rs
* @return the entropy loss layer
*/
@Nonnull
@SuppressWarnings("unused")
public static EntropyLossLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new EntropyLossLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
final double zero_tol = 1e-12;
TensorList indata = inObj[0].getData();
@Nonnull final RefArrayList gradient = new RefArrayList<>();
final double max_prob = 1.;
boolean alive = alive(inObj[0].addRef());
TensorArray data = fwd(zero_tol, indata.addRef(), gradient.addRef(), max_prob, RefUtil.addRef(inObj));
final Result.Accumulator accumulator1 = inObj[0].getAccumulator();
final boolean alive1 = inObj[0].isAlive();
final Result.Accumulator accumulator2 = inObj[1].getAccumulator();
final boolean alive2 = inObj[1].isAlive();
RefUtil.freeRef(inObj);
Result.Accumulator accumulator = new Accumulator(indata, gradient, max_prob, zero_tol, accumulator1, alive1, accumulator2, alive2);
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
EntropyLossLayer addRef() {
return (EntropyLossLayer) super.addRef();
}
private boolean alive(Result result) {
try {
if (result.isAlive()) return true;
else return false;
} finally {
result.freeRef();
}
}
@NotNull
private TensorArray fwd(double zero_tol, TensorList indata, RefArrayList gradient, double max_prob, @Nonnull Result[] inObj) {
return new TensorArray(RefIntStream.range(0, indata.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nullable final Tensor l = indata.get(dataIndex);
TensorList temp_03_0006 = inObj[1].getData();
@Nullable final Tensor r = temp_03_0006.get(dataIndex);
temp_03_0006.freeRef();
if (l.length() != r.length()) {
IllegalArgumentException temp_03_0004 = new IllegalArgumentException(
l.length() + " != " + r.length());
l.freeRef();
r.freeRef();
throw temp_03_0004;
}
@Nonnull final Tensor gradientTensor = new Tensor(l.getDimensions());
@Nullable final double[] gradientData = gradientTensor.getData();
double total = 0;
@Nullable final double[] ld = l.getData();
@Nullable final double[] rd = r.getData();
r.freeRef();
for (int i = 0; i < l.length(); i++) {
final double lv = Math.max(Math.min(ld[i], max_prob), zero_tol);
final double rv = rd[i];
if (rv > 0) {
gradientData[i] = -rv / lv;
total += -rv * Math.log(lv);
} else {
gradientData[i] = 0;
}
}
l.freeRef();
//assert total >= 0;
gradient.add(dataIndex, gradientTensor);
//RefUtil.set(gradient, dataIndex, gradientTensor);
return new Tensor(new double[]{total}, 1);
}, indata, inObj, gradient)).toArray(Tensor[]::new));
}
private static class Accumulator extends Result.Accumulator {
private final TensorList indata;
private final RefArrayList gradient;
private final double max_prob;
private final double zero_tol;
private Result.Accumulator accumulator1;
private Result.Accumulator accumulator0;
private boolean alive0;
private boolean alive1;
/**
* Instantiates a new Accumulator.
*
* @param indata the indata
* @param gradient the gradient
* @param max_prob the max prob
* @param zero_tol the zero tol
* @param accumulator0 the accumulator 0
* @param alive0 the alive 0
* @param accumulator1 the accumulator 1
* @param alive1 the alive 1
*/
public Accumulator(TensorList indata, RefArrayList gradient, double max_prob, double zero_tol, Result.Accumulator accumulator0, boolean alive0, Result.Accumulator accumulator1, boolean alive1) {
this.indata = indata;
this.gradient = gradient;
this.max_prob = max_prob;
this.zero_tol = zero_tol;
this.accumulator1 = accumulator1;
this.accumulator0 = accumulator0;
this.alive0 = alive0;
this.alive1 = alive1;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
if (alive1) {
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, delta.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor deltaTensor = delta.get(dataIndex);
@Nullable final Tensor inputTensor = indata.get(dataIndex);
Tensor tensor = gradient.get(dataIndex);
@Nonnull final Tensor passback = new Tensor(tensor.getDimensions());
tensor.freeRef();
for (int i = 0; i < passback.length(); i++) {
final double lv = Math.max(Math.min(inputTensor.get(i), max_prob), zero_tol);
final double value = -deltaTensor.get(0) * Math.log(lv);
if (Double.isFinite(value)) passback.set(i, value);
}
inputTensor.freeRef();
deltaTensor.freeRef();
return passback;
}, indata.addRef(), RefUtil.addRef(gradient),
delta.addRef()))
.toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
accumulator1.accept(buffer1, tensorArray);
}
if (alive0) {
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, delta.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor tensor = delta.get(dataIndex);
Tensor tensor1 = gradient.get(dataIndex);
@Nonnull final Tensor passback = new Tensor(tensor1.getDimensions());
for (int i = 0; i < passback.length(); i++) {
passback.set(i, tensor.get(0) * tensor1.get(i));
}
tensor1.freeRef();
tensor.freeRef();
return passback;
}, delta.addRef(), RefUtil.addRef(gradient)))
.toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
accumulator0.accept(buffer1, tensorArray);
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
accumulator0.freeRef();
accumulator1.freeRef();
indata.freeRef();
RefUtil.freeRef(gradient);
}
}
}