com.simiacryptus.mindseye.layers.java.ImgPixelSoftmaxLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Img pixel softmax layer.
*/
@SuppressWarnings("serial")
public class ImgPixelSoftmaxLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(ImgPixelSoftmaxLayer.class);
/**
* Instantiates a new Img pixel softmax layer.
*/
public ImgPixelSoftmaxLayer() {
super();
}
/**
* Instantiates a new Img pixel softmax layer.
*
* @param json the json
*/
protected ImgPixelSoftmaxLayer(@Nonnull final JsonObject json) {
super(json);
}
/**
* From json img pixel softmax layer.
*
* @param json the json
* @param rs the rs
* @return the img pixel softmax layer
*/
@Nonnull
@SuppressWarnings("unused")
public static ImgPixelSoftmaxLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ImgPixelSoftmaxLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
assert 1 == inObj.length;
Result result = eval(inObj[0].addRef());
RefUtil.freeRef(inObj);
return result;
}
/**
* Eval result.
*
* @param input the input
* @return the result
*/
@Nonnull
public Result eval(@Nonnull final Result input) {
final TensorList inputData = input.getData();
int[] inputDims = inputData.getDimensions();
assert 3 == inputDims.length;
final int inputBands = inputDims[2];
final int width = inputDims[0];
final int height = inputDims[1];
TensorArray maxima = new TensorArray(inputData.stream().map(inputTensor -> {
Tensor tensor = new Tensor(width, height, 1);
tensor.setByCoord(RefUtil.wrapInterface(c -> {
return RefIntStream.range(0, inputBands).mapToDouble(RefUtil.wrapInterface(band -> {
int[] coords = c.getCoords();
return inputTensor.get(coords[0], coords[1], band);
}, inputTensor == null ? null : inputTensor.addRef())).max().getAsDouble();
}, inputTensor));
return tensor;
}).toArray(Tensor[]::new));
TensorArray exps = new TensorArray(RefIntStream.range(0, inputData.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) index -> {
final Tensor inputTensor = inputData.get(index);
Tensor maxTensor = maxima.get(index);
Tensor tensor = new Tensor(inputDims);
tensor.setByCoord(RefUtil.wrapInterface(c -> {
int[] coords = c.getCoords();
return Math.exp(inputTensor.get(c) - maxTensor.get(coords[0], coords[1], 0));
}, maxTensor, inputTensor));
return tensor;
}, inputData.addRef(), maxima.addRef()))
.toArray(Tensor[]::new));
maxima.freeRef();
TensorArray sums = new TensorArray(exps.stream().map(expTensor -> {
Tensor tensor = new Tensor(width, height, 1);
tensor.setByCoord(RefUtil.wrapInterface(c -> {
return RefIntStream.range(0, inputBands).mapToDouble(RefUtil.wrapInterface(band -> {
int[] coords = c.getCoords();
return expTensor.get(coords[0], coords[1], band);
}, expTensor == null ? null : expTensor.addRef())).sum();
}, expTensor));
return tensor;
}).toArray(Tensor[]::new));
TensorArray output = new TensorArray(RefIntStream.range(0, inputData.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) index -> {
Tensor sumTensor = sums.get(index);
Tensor expTensor = exps.get(index);
Tensor tensor = new Tensor(inputDims);
tensor.setByCoord(RefUtil.wrapInterface(c -> {
int[] coords = c.getCoords();
return expTensor.get(c) / sumTensor.get(coords[0], coords[1], 0);
}, sumTensor, expTensor));
return tensor;
}, sums.addRef(), exps.addRef())).toArray(Tensor[]::new));
boolean alive = input.isAlive();
Accumulator accumulator = new Accumulator(sums, inputData, exps, width, height, inputBands, inputDims, input.getAccumulator(), input.isAlive());
input.freeRef();
return new Result(output, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
ImgPixelSoftmaxLayer addRef() {
return (ImgPixelSoftmaxLayer) super.addRef();
}
private static class Accumulator extends Result.Accumulator {
private final TensorArray sums;
private final TensorList inputData;
private final TensorArray exps;
private final int width;
private final int height;
private final int inputBands;
private final int[] inputDims;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param sums the sums
* @param inputData the input data
* @param exps the exps
* @param width the width
* @param height the height
* @param inputBands the input bands
* @param inputDims the input dims
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(TensorArray sums, TensorList inputData, TensorArray exps, int width, int height, int inputBands, int[] inputDims, Result.Accumulator accumulator, boolean alive) {
this.sums = sums;
this.inputData = inputData;
this.exps = exps;
this.width = width;
this.height = height;
this.inputBands = inputBands;
this.inputDims = inputDims;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
if (alive) {
TensorArray dots = new TensorArray(RefIntStream.range(0, inputData.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) index -> {
final Tensor deltaTensor = delta.get(index);
Tensor expTensor = exps.get(index);
Tensor tensor = new Tensor(width, height, 1);
tensor.setByCoord(RefUtil.wrapInterface(c -> {
return RefIntStream.range(0, inputBands).mapToDouble(RefUtil.wrapInterface(band -> {
int[] coords = c.getCoords();
return expTensor.get(coords[0], coords[1], band)
* deltaTensor.get(coords[0], coords[1], band);
}, deltaTensor.addRef(),
expTensor.addRef())).sum();
}, deltaTensor, expTensor));
return tensor;
}, delta.addRef(), exps.addRef()))
.toArray(Tensor[]::new));
TensorArray passback = new TensorArray(RefIntStream.range(0, inputData.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) index -> {
final Tensor deltaTensor = delta.get(index);
final Tensor expTensor = exps.get(index);
Tensor sumTensor = sums.get(index);
Tensor dotTensor = dots.get(index);
Tensor tensor = new Tensor(inputDims);
tensor.setByCoord(RefUtil.wrapInterface(c -> {
int[] coords = c.getCoords();
double sum = sumTensor.get(coords[0], coords[1], 0);
double dot = dotTensor.get(coords[0], coords[1], 0);
double deltaValue = deltaTensor.get(c);
double expValue = expTensor.get(c);
return (sum * deltaValue - dot) * expValue / (sum * sum);
}, deltaTensor, expTensor, dotTensor, sumTensor));
return tensor;
}, sums.addRef(), dots,
delta.addRef(), exps.addRef()))
.toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, passback);
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
accumulator.freeRef();
sums.freeRef();
inputData.freeRef();
exps.freeRef();
}
}
}