com.simiacryptus.mindseye.layers.java.StaticScalarLossLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Static scalar loss layer.
*/
@SuppressWarnings("serial")
public class StaticScalarLossLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(StaticScalarLossLayer.class);
private double target = 0.0;
/**
* Instantiates a new Static scalar loss layer.
*/
public StaticScalarLossLayer() {
}
/**
* Instantiates a new Static scalar loss layer.
*
* @param id the id
*/
protected StaticScalarLossLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* Gets target.
*
* @return the target
*/
public double getTarget() {
return target;
}
/**
* Sets target.
*
* @param target the target
*/
public void setTarget(double target) {
this.target = target;
}
/**
* From json static scalar loss layer.
*
* @param json the json
* @param rs the rs
* @return the static scalar loss layer
*/
@Nonnull
@SuppressWarnings("unused")
public static StaticScalarLossLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new StaticScalarLossLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
if (1 != inObj.length) {
RefUtil.freeRef(inObj);
throw new IllegalArgumentException();
}
//if (inObj[0].getData().length() != 1) throw new IllegalArgumentException();
final Result in0 = inObj[0].addRef();
RefUtil.freeRef(inObj);
boolean alive = in0.isAlive();
TensorArray data = fwd(in0.getData());
Result.Accumulator accumulator = new Accumulator(this.getTarget(), in0.getAccumulator(), in0.isAlive(), in0.getData());
in0.freeRef();
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
StaticScalarLossLayer addRef() {
return (StaticScalarLossLayer) super.addRef();
}
@NotNull
private TensorArray fwd(TensorList indata) {
return new TensorArray(RefIntStream.range(0, indata.length()).parallel()
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nullable final Tensor a = indata.get(dataIndex);
final double diff = Math.abs(a.get(0) - getTarget());
a.freeRef();
return new Tensor(new double[]{diff}, 1);
}, indata)).toArray(Tensor[]::new));
}
private static class Accumulator extends Result.Accumulator {
private final TensorList indata;
private double target;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param target the target
* @param accumulator the accumulator
* @param alive the alive
* @param indata the indata
*/
public Accumulator(double target, Result.Accumulator accumulator, boolean alive, @NotNull TensorList indata) {
this.indata = indata;
this.target = target;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList data) {
if (alive) {
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, data.length()).parallel()
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nullable final Tensor a = indata.get(dataIndex);
Tensor tensor = data.get(dataIndex);
final double deriv = tensor.get(0)
* (a.get(0) - target < 0 ? -1 : 1);
tensor.freeRef();
a.freeRef();
return new Tensor(new double[]{deriv}, 1);
}, indata.addRef(), data.addRef()))
.toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, tensorArray);
}
data.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
indata.freeRef();
accumulator.freeRef();
}
}
}