com.simiacryptus.mindseye.opt.region.MeanVarianceGradient Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.opt.region;
import com.simiacryptus.util.ArrayUtil;
import javax.annotation.Nonnull;
public class MeanVarianceGradient implements TrustRegion {
private double max = Double.POSITIVE_INFINITY;
public double getMax() {
return max;
}
@Nonnull
public MeanVarianceGradient setMax(final double max) {
this.max = max;
return this;
}
public double length(@Nonnull final double[] weights) {
return ArrayUtil.magnitude(weights);
}
@Nonnull
@Override
public double[] project(@Nonnull final double[] weights, @Nonnull final double[] point) {
final double meanWeight = ArrayUtil.mean(weights);
final double meanPoint = ArrayUtil.mean(point);
final double varWeights = ArrayUtil.mean(ArrayUtil.op(weights, x -> Math.abs(x - meanWeight)));
final double varPoint = ArrayUtil.mean(ArrayUtil.op(point, x -> Math.abs(x - meanPoint)));
return ArrayUtil.op(weights, v -> {
return (v - meanWeight) * (varPoint / varWeights) + meanPoint;
});
}
}