com.twitter.scalding.mathematics.GeneratedAbstractAlgebra.scala Maven / Gradle / Ivy
The newest version!
// following were autogenerated by scripts/ntuple_generators.rb at Tue Apr 17 21:48:42 -0700 2012 do not edit
package com.twitter.scalding.mathematics
/**
* Combine 3 monoids into a product monoid
*/
class Tuple3Monoid[A, B, C](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C]) extends Monoid[(A, B, C)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero)
override def plus(l : (A, B, C), r : (A, B, C)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3))
}
/**
* Combine 3 groups into a product group
*/
class Tuple3Group[A, B, C](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C]) extends Group[(A, B, C)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero)
override def negate(v : (A, B, C)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3))
override def plus(l : (A, B, C), r : (A, B, C)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3))
override def minus(l : (A, B, C), r : (A, B, C)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3))
}
/**
* Combine 3 rings into a product ring
*/
class Tuple3Ring[A, B, C](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C]) extends Ring[(A, B, C)] {
override def zero = (aring.zero, bring.zero, cring.zero)
override def one = (aring.one, bring.one, cring.one)
override def negate(v : (A, B, C)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3))
override def plus(l : (A, B, C), r : (A, B, C)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3))
override def minus(l : (A, B, C), r : (A, B, C)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3))
override def times(l : (A, B, C), r : (A, B, C)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3))
}
/**
* Combine 4 monoids into a product monoid
*/
class Tuple4Monoid[A, B, C, D](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D]) extends Monoid[(A, B, C, D)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero)
override def plus(l : (A, B, C, D), r : (A, B, C, D)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4))
}
/**
* Combine 4 groups into a product group
*/
class Tuple4Group[A, B, C, D](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D]) extends Group[(A, B, C, D)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero)
override def negate(v : (A, B, C, D)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4))
override def plus(l : (A, B, C, D), r : (A, B, C, D)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4))
override def minus(l : (A, B, C, D), r : (A, B, C, D)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4))
}
/**
* Combine 4 rings into a product ring
*/
class Tuple4Ring[A, B, C, D](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D]) extends Ring[(A, B, C, D)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one)
override def negate(v : (A, B, C, D)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4))
override def plus(l : (A, B, C, D), r : (A, B, C, D)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4))
override def minus(l : (A, B, C, D), r : (A, B, C, D)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4))
override def times(l : (A, B, C, D), r : (A, B, C, D)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4))
}
/**
* Combine 5 monoids into a product monoid
*/
class Tuple5Monoid[A, B, C, D, E](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E]) extends Monoid[(A, B, C, D, E)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero)
override def plus(l : (A, B, C, D, E), r : (A, B, C, D, E)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5))
}
/**
* Combine 5 groups into a product group
*/
class Tuple5Group[A, B, C, D, E](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E]) extends Group[(A, B, C, D, E)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero)
override def negate(v : (A, B, C, D, E)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5))
override def plus(l : (A, B, C, D, E), r : (A, B, C, D, E)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5))
override def minus(l : (A, B, C, D, E), r : (A, B, C, D, E)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5))
}
/**
* Combine 5 rings into a product ring
*/
class Tuple5Ring[A, B, C, D, E](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E]) extends Ring[(A, B, C, D, E)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one)
override def negate(v : (A, B, C, D, E)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5))
override def plus(l : (A, B, C, D, E), r : (A, B, C, D, E)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5))
override def minus(l : (A, B, C, D, E), r : (A, B, C, D, E)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5))
override def times(l : (A, B, C, D, E), r : (A, B, C, D, E)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5))
}
/**
* Combine 6 monoids into a product monoid
*/
class Tuple6Monoid[A, B, C, D, E, F](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F]) extends Monoid[(A, B, C, D, E, F)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero)
override def plus(l : (A, B, C, D, E, F), r : (A, B, C, D, E, F)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6))
}
/**
* Combine 6 groups into a product group
*/
class Tuple6Group[A, B, C, D, E, F](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F]) extends Group[(A, B, C, D, E, F)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero)
override def negate(v : (A, B, C, D, E, F)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6))
override def plus(l : (A, B, C, D, E, F), r : (A, B, C, D, E, F)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6))
override def minus(l : (A, B, C, D, E, F), r : (A, B, C, D, E, F)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6))
}
/**
* Combine 6 rings into a product ring
*/
class Tuple6Ring[A, B, C, D, E, F](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F]) extends Ring[(A, B, C, D, E, F)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one)
override def negate(v : (A, B, C, D, E, F)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6))
override def plus(l : (A, B, C, D, E, F), r : (A, B, C, D, E, F)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6))
override def minus(l : (A, B, C, D, E, F), r : (A, B, C, D, E, F)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6))
override def times(l : (A, B, C, D, E, F), r : (A, B, C, D, E, F)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6))
}
/**
* Combine 7 monoids into a product monoid
*/
class Tuple7Monoid[A, B, C, D, E, F, G](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G]) extends Monoid[(A, B, C, D, E, F, G)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G), r : (A, B, C, D, E, F, G)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7))
}
/**
* Combine 7 groups into a product group
*/
class Tuple7Group[A, B, C, D, E, F, G](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G]) extends Group[(A, B, C, D, E, F, G)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero)
override def negate(v : (A, B, C, D, E, F, G)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7))
override def plus(l : (A, B, C, D, E, F, G), r : (A, B, C, D, E, F, G)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7))
override def minus(l : (A, B, C, D, E, F, G), r : (A, B, C, D, E, F, G)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7))
}
/**
* Combine 7 rings into a product ring
*/
class Tuple7Ring[A, B, C, D, E, F, G](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G]) extends Ring[(A, B, C, D, E, F, G)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one)
override def negate(v : (A, B, C, D, E, F, G)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7))
override def plus(l : (A, B, C, D, E, F, G), r : (A, B, C, D, E, F, G)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7))
override def minus(l : (A, B, C, D, E, F, G), r : (A, B, C, D, E, F, G)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7))
override def times(l : (A, B, C, D, E, F, G), r : (A, B, C, D, E, F, G)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7))
}
/**
* Combine 8 monoids into a product monoid
*/
class Tuple8Monoid[A, B, C, D, E, F, G, H](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H]) extends Monoid[(A, B, C, D, E, F, G, H)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H), r : (A, B, C, D, E, F, G, H)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8))
}
/**
* Combine 8 groups into a product group
*/
class Tuple8Group[A, B, C, D, E, F, G, H](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H]) extends Group[(A, B, C, D, E, F, G, H)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8))
override def plus(l : (A, B, C, D, E, F, G, H), r : (A, B, C, D, E, F, G, H)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8))
override def minus(l : (A, B, C, D, E, F, G, H), r : (A, B, C, D, E, F, G, H)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8))
}
/**
* Combine 8 rings into a product ring
*/
class Tuple8Ring[A, B, C, D, E, F, G, H](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H]) extends Ring[(A, B, C, D, E, F, G, H)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one)
override def negate(v : (A, B, C, D, E, F, G, H)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8))
override def plus(l : (A, B, C, D, E, F, G, H), r : (A, B, C, D, E, F, G, H)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8))
override def minus(l : (A, B, C, D, E, F, G, H), r : (A, B, C, D, E, F, G, H)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8))
override def times(l : (A, B, C, D, E, F, G, H), r : (A, B, C, D, E, F, G, H)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8))
}
/**
* Combine 9 monoids into a product monoid
*/
class Tuple9Monoid[A, B, C, D, E, F, G, H, I](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I]) extends Monoid[(A, B, C, D, E, F, G, H, I)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I), r : (A, B, C, D, E, F, G, H, I)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9))
}
/**
* Combine 9 groups into a product group
*/
class Tuple9Group[A, B, C, D, E, F, G, H, I](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I]) extends Group[(A, B, C, D, E, F, G, H, I)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9))
override def plus(l : (A, B, C, D, E, F, G, H, I), r : (A, B, C, D, E, F, G, H, I)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9))
override def minus(l : (A, B, C, D, E, F, G, H, I), r : (A, B, C, D, E, F, G, H, I)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9))
}
/**
* Combine 9 rings into a product ring
*/
class Tuple9Ring[A, B, C, D, E, F, G, H, I](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I]) extends Ring[(A, B, C, D, E, F, G, H, I)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9))
override def plus(l : (A, B, C, D, E, F, G, H, I), r : (A, B, C, D, E, F, G, H, I)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9))
override def minus(l : (A, B, C, D, E, F, G, H, I), r : (A, B, C, D, E, F, G, H, I)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9))
override def times(l : (A, B, C, D, E, F, G, H, I), r : (A, B, C, D, E, F, G, H, I)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9))
}
/**
* Combine 10 monoids into a product monoid
*/
class Tuple10Monoid[A, B, C, D, E, F, G, H, I, J](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J]) extends Monoid[(A, B, C, D, E, F, G, H, I, J)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J), r : (A, B, C, D, E, F, G, H, I, J)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10))
}
/**
* Combine 10 groups into a product group
*/
class Tuple10Group[A, B, C, D, E, F, G, H, I, J](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J]) extends Group[(A, B, C, D, E, F, G, H, I, J)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10))
override def plus(l : (A, B, C, D, E, F, G, H, I, J), r : (A, B, C, D, E, F, G, H, I, J)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10))
override def minus(l : (A, B, C, D, E, F, G, H, I, J), r : (A, B, C, D, E, F, G, H, I, J)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10))
}
/**
* Combine 10 rings into a product ring
*/
class Tuple10Ring[A, B, C, D, E, F, G, H, I, J](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J]) extends Ring[(A, B, C, D, E, F, G, H, I, J)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10))
override def plus(l : (A, B, C, D, E, F, G, H, I, J), r : (A, B, C, D, E, F, G, H, I, J)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10))
override def minus(l : (A, B, C, D, E, F, G, H, I, J), r : (A, B, C, D, E, F, G, H, I, J)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10))
override def times(l : (A, B, C, D, E, F, G, H, I, J), r : (A, B, C, D, E, F, G, H, I, J)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10))
}
/**
* Combine 11 monoids into a product monoid
*/
class Tuple11Monoid[A, B, C, D, E, F, G, H, I, J, K](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K), r : (A, B, C, D, E, F, G, H, I, J, K)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11))
}
/**
* Combine 11 groups into a product group
*/
class Tuple11Group[A, B, C, D, E, F, G, H, I, J, K](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K]) extends Group[(A, B, C, D, E, F, G, H, I, J, K)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K), r : (A, B, C, D, E, F, G, H, I, J, K)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K), r : (A, B, C, D, E, F, G, H, I, J, K)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11))
}
/**
* Combine 11 rings into a product ring
*/
class Tuple11Ring[A, B, C, D, E, F, G, H, I, J, K](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K), r : (A, B, C, D, E, F, G, H, I, J, K)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K), r : (A, B, C, D, E, F, G, H, I, J, K)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K), r : (A, B, C, D, E, F, G, H, I, J, K)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11))
}
/**
* Combine 12 monoids into a product monoid
*/
class Tuple12Monoid[A, B, C, D, E, F, G, H, I, J, K, L](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L), r : (A, B, C, D, E, F, G, H, I, J, K, L)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12))
}
/**
* Combine 12 groups into a product group
*/
class Tuple12Group[A, B, C, D, E, F, G, H, I, J, K, L](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L), r : (A, B, C, D, E, F, G, H, I, J, K, L)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L), r : (A, B, C, D, E, F, G, H, I, J, K, L)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12))
}
/**
* Combine 12 rings into a product ring
*/
class Tuple12Ring[A, B, C, D, E, F, G, H, I, J, K, L](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L), r : (A, B, C, D, E, F, G, H, I, J, K, L)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L), r : (A, B, C, D, E, F, G, H, I, J, K, L)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L), r : (A, B, C, D, E, F, G, H, I, J, K, L)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12))
}
/**
* Combine 13 monoids into a product monoid
*/
class Tuple13Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M), r : (A, B, C, D, E, F, G, H, I, J, K, L, M)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13))
}
/**
* Combine 13 groups into a product group
*/
class Tuple13Group[A, B, C, D, E, F, G, H, I, J, K, L, M](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M), r : (A, B, C, D, E, F, G, H, I, J, K, L, M)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M), r : (A, B, C, D, E, F, G, H, I, J, K, L, M)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13))
}
/**
* Combine 13 rings into a product ring
*/
class Tuple13Ring[A, B, C, D, E, F, G, H, I, J, K, L, M](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M), r : (A, B, C, D, E, F, G, H, I, J, K, L, M)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M), r : (A, B, C, D, E, F, G, H, I, J, K, L, M)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M), r : (A, B, C, D, E, F, G, H, I, J, K, L, M)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13))
}
/**
* Combine 14 monoids into a product monoid
*/
class Tuple14Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14))
}
/**
* Combine 14 groups into a product group
*/
class Tuple14Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14))
}
/**
* Combine 14 rings into a product ring
*/
class Tuple14Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14))
}
/**
* Combine 15 monoids into a product monoid
*/
class Tuple15Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero, omonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14), omonoid.plus(l._15, r._15))
}
/**
* Combine 15 groups into a product group
*/
class Tuple15Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero, ogroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14), ogroup.negate(v._15))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14), ogroup.plus(l._15, r._15))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14), ogroup.minus(l._15, r._15))
}
/**
* Combine 15 rings into a product ring
*/
class Tuple15Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero, oring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one, oring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14), oring.negate(v._15))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14), oring.plus(l._15, r._15))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14), oring.minus(l._15, r._15))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14), oring.times(l._15, r._15))
}
/**
* Combine 16 monoids into a product monoid
*/
class Tuple16Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero, omonoid.zero, pmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14), omonoid.plus(l._15, r._15), pmonoid.plus(l._16, r._16))
}
/**
* Combine 16 groups into a product group
*/
class Tuple16Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero, ogroup.zero, pgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14), ogroup.negate(v._15), pgroup.negate(v._16))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14), ogroup.plus(l._15, r._15), pgroup.plus(l._16, r._16))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14), ogroup.minus(l._15, r._15), pgroup.minus(l._16, r._16))
}
/**
* Combine 16 rings into a product ring
*/
class Tuple16Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero, oring.zero, pring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one, oring.one, pring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14), oring.negate(v._15), pring.negate(v._16))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14), oring.plus(l._15, r._15), pring.plus(l._16, r._16))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14), oring.minus(l._15, r._15), pring.minus(l._16, r._16))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14), oring.times(l._15, r._15), pring.times(l._16, r._16))
}
/**
* Combine 17 monoids into a product monoid
*/
class Tuple17Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero, omonoid.zero, pmonoid.zero, qmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14), omonoid.plus(l._15, r._15), pmonoid.plus(l._16, r._16), qmonoid.plus(l._17, r._17))
}
/**
* Combine 17 groups into a product group
*/
class Tuple17Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero, ogroup.zero, pgroup.zero, qgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14), ogroup.negate(v._15), pgroup.negate(v._16), qgroup.negate(v._17))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14), ogroup.plus(l._15, r._15), pgroup.plus(l._16, r._16), qgroup.plus(l._17, r._17))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14), ogroup.minus(l._15, r._15), pgroup.minus(l._16, r._16), qgroup.minus(l._17, r._17))
}
/**
* Combine 17 rings into a product ring
*/
class Tuple17Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero, oring.zero, pring.zero, qring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one, oring.one, pring.one, qring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14), oring.negate(v._15), pring.negate(v._16), qring.negate(v._17))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14), oring.plus(l._15, r._15), pring.plus(l._16, r._16), qring.plus(l._17, r._17))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14), oring.minus(l._15, r._15), pring.minus(l._16, r._16), qring.minus(l._17, r._17))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14), oring.times(l._15, r._15), pring.times(l._16, r._16), qring.times(l._17, r._17))
}
/**
* Combine 18 monoids into a product monoid
*/
class Tuple18Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero, omonoid.zero, pmonoid.zero, qmonoid.zero, rmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14), omonoid.plus(l._15, r._15), pmonoid.plus(l._16, r._16), qmonoid.plus(l._17, r._17), rmonoid.plus(l._18, r._18))
}
/**
* Combine 18 groups into a product group
*/
class Tuple18Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero, ogroup.zero, pgroup.zero, qgroup.zero, rgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14), ogroup.negate(v._15), pgroup.negate(v._16), qgroup.negate(v._17), rgroup.negate(v._18))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14), ogroup.plus(l._15, r._15), pgroup.plus(l._16, r._16), qgroup.plus(l._17, r._17), rgroup.plus(l._18, r._18))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14), ogroup.minus(l._15, r._15), pgroup.minus(l._16, r._16), qgroup.minus(l._17, r._17), rgroup.minus(l._18, r._18))
}
/**
* Combine 18 rings into a product ring
*/
class Tuple18Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero, oring.zero, pring.zero, qring.zero, rring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one, oring.one, pring.one, qring.one, rring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14), oring.negate(v._15), pring.negate(v._16), qring.negate(v._17), rring.negate(v._18))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14), oring.plus(l._15, r._15), pring.plus(l._16, r._16), qring.plus(l._17, r._17), rring.plus(l._18, r._18))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14), oring.minus(l._15, r._15), pring.minus(l._16, r._16), qring.minus(l._17, r._17), rring.minus(l._18, r._18))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14), oring.times(l._15, r._15), pring.times(l._16, r._16), qring.times(l._17, r._17), rring.times(l._18, r._18))
}
/**
* Combine 19 monoids into a product monoid
*/
class Tuple19Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R], smonoid : Monoid[S]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero, omonoid.zero, pmonoid.zero, qmonoid.zero, rmonoid.zero, smonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14), omonoid.plus(l._15, r._15), pmonoid.plus(l._16, r._16), qmonoid.plus(l._17, r._17), rmonoid.plus(l._18, r._18), smonoid.plus(l._19, r._19))
}
/**
* Combine 19 groups into a product group
*/
class Tuple19Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R], sgroup : Group[S]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero, ogroup.zero, pgroup.zero, qgroup.zero, rgroup.zero, sgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14), ogroup.negate(v._15), pgroup.negate(v._16), qgroup.negate(v._17), rgroup.negate(v._18), sgroup.negate(v._19))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14), ogroup.plus(l._15, r._15), pgroup.plus(l._16, r._16), qgroup.plus(l._17, r._17), rgroup.plus(l._18, r._18), sgroup.plus(l._19, r._19))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14), ogroup.minus(l._15, r._15), pgroup.minus(l._16, r._16), qgroup.minus(l._17, r._17), rgroup.minus(l._18, r._18), sgroup.minus(l._19, r._19))
}
/**
* Combine 19 rings into a product ring
*/
class Tuple19Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R], sring : Ring[S]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero, oring.zero, pring.zero, qring.zero, rring.zero, sring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one, oring.one, pring.one, qring.one, rring.one, sring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14), oring.negate(v._15), pring.negate(v._16), qring.negate(v._17), rring.negate(v._18), sring.negate(v._19))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14), oring.plus(l._15, r._15), pring.plus(l._16, r._16), qring.plus(l._17, r._17), rring.plus(l._18, r._18), sring.plus(l._19, r._19))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14), oring.minus(l._15, r._15), pring.minus(l._16, r._16), qring.minus(l._17, r._17), rring.minus(l._18, r._18), sring.minus(l._19, r._19))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14), oring.times(l._15, r._15), pring.times(l._16, r._16), qring.times(l._17, r._17), rring.times(l._18, r._18), sring.times(l._19, r._19))
}
/**
* Combine 20 monoids into a product monoid
*/
class Tuple20Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R], smonoid : Monoid[S], tmonoid : Monoid[T]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero, omonoid.zero, pmonoid.zero, qmonoid.zero, rmonoid.zero, smonoid.zero, tmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14), omonoid.plus(l._15, r._15), pmonoid.plus(l._16, r._16), qmonoid.plus(l._17, r._17), rmonoid.plus(l._18, r._18), smonoid.plus(l._19, r._19), tmonoid.plus(l._20, r._20))
}
/**
* Combine 20 groups into a product group
*/
class Tuple20Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R], sgroup : Group[S], tgroup : Group[T]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero, ogroup.zero, pgroup.zero, qgroup.zero, rgroup.zero, sgroup.zero, tgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14), ogroup.negate(v._15), pgroup.negate(v._16), qgroup.negate(v._17), rgroup.negate(v._18), sgroup.negate(v._19), tgroup.negate(v._20))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14), ogroup.plus(l._15, r._15), pgroup.plus(l._16, r._16), qgroup.plus(l._17, r._17), rgroup.plus(l._18, r._18), sgroup.plus(l._19, r._19), tgroup.plus(l._20, r._20))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14), ogroup.minus(l._15, r._15), pgroup.minus(l._16, r._16), qgroup.minus(l._17, r._17), rgroup.minus(l._18, r._18), sgroup.minus(l._19, r._19), tgroup.minus(l._20, r._20))
}
/**
* Combine 20 rings into a product ring
*/
class Tuple20Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R], sring : Ring[S], tring : Ring[T]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero, oring.zero, pring.zero, qring.zero, rring.zero, sring.zero, tring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one, oring.one, pring.one, qring.one, rring.one, sring.one, tring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14), oring.negate(v._15), pring.negate(v._16), qring.negate(v._17), rring.negate(v._18), sring.negate(v._19), tring.negate(v._20))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14), oring.plus(l._15, r._15), pring.plus(l._16, r._16), qring.plus(l._17, r._17), rring.plus(l._18, r._18), sring.plus(l._19, r._19), tring.plus(l._20, r._20))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14), oring.minus(l._15, r._15), pring.minus(l._16, r._16), qring.minus(l._17, r._17), rring.minus(l._18, r._18), sring.minus(l._19, r._19), tring.minus(l._20, r._20))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14), oring.times(l._15, r._15), pring.times(l._16, r._16), qring.times(l._17, r._17), rring.times(l._18, r._18), sring.times(l._19, r._19), tring.times(l._20, r._20))
}
/**
* Combine 21 monoids into a product monoid
*/
class Tuple21Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R], smonoid : Monoid[S], tmonoid : Monoid[T], umonoid : Monoid[U]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero, omonoid.zero, pmonoid.zero, qmonoid.zero, rmonoid.zero, smonoid.zero, tmonoid.zero, umonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14), omonoid.plus(l._15, r._15), pmonoid.plus(l._16, r._16), qmonoid.plus(l._17, r._17), rmonoid.plus(l._18, r._18), smonoid.plus(l._19, r._19), tmonoid.plus(l._20, r._20), umonoid.plus(l._21, r._21))
}
/**
* Combine 21 groups into a product group
*/
class Tuple21Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R], sgroup : Group[S], tgroup : Group[T], ugroup : Group[U]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero, ogroup.zero, pgroup.zero, qgroup.zero, rgroup.zero, sgroup.zero, tgroup.zero, ugroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14), ogroup.negate(v._15), pgroup.negate(v._16), qgroup.negate(v._17), rgroup.negate(v._18), sgroup.negate(v._19), tgroup.negate(v._20), ugroup.negate(v._21))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14), ogroup.plus(l._15, r._15), pgroup.plus(l._16, r._16), qgroup.plus(l._17, r._17), rgroup.plus(l._18, r._18), sgroup.plus(l._19, r._19), tgroup.plus(l._20, r._20), ugroup.plus(l._21, r._21))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14), ogroup.minus(l._15, r._15), pgroup.minus(l._16, r._16), qgroup.minus(l._17, r._17), rgroup.minus(l._18, r._18), sgroup.minus(l._19, r._19), tgroup.minus(l._20, r._20), ugroup.minus(l._21, r._21))
}
/**
* Combine 21 rings into a product ring
*/
class Tuple21Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R], sring : Ring[S], tring : Ring[T], uring : Ring[U]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero, oring.zero, pring.zero, qring.zero, rring.zero, sring.zero, tring.zero, uring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one, oring.one, pring.one, qring.one, rring.one, sring.one, tring.one, uring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14), oring.negate(v._15), pring.negate(v._16), qring.negate(v._17), rring.negate(v._18), sring.negate(v._19), tring.negate(v._20), uring.negate(v._21))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14), oring.plus(l._15, r._15), pring.plus(l._16, r._16), qring.plus(l._17, r._17), rring.plus(l._18, r._18), sring.plus(l._19, r._19), tring.plus(l._20, r._20), uring.plus(l._21, r._21))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14), oring.minus(l._15, r._15), pring.minus(l._16, r._16), qring.minus(l._17, r._17), rring.minus(l._18, r._18), sring.minus(l._19, r._19), tring.minus(l._20, r._20), uring.minus(l._21, r._21))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14), oring.times(l._15, r._15), pring.times(l._16, r._16), qring.times(l._17, r._17), rring.times(l._18, r._18), sring.times(l._19, r._19), tring.times(l._20, r._20), uring.times(l._21, r._21))
}
/**
* Combine 22 monoids into a product monoid
*/
class Tuple22Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R], smonoid : Monoid[S], tmonoid : Monoid[T], umonoid : Monoid[U], vmonoid : Monoid[V]) extends Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)] {
override def zero = (amonoid.zero, bmonoid.zero, cmonoid.zero, dmonoid.zero, emonoid.zero, fmonoid.zero, gmonoid.zero, hmonoid.zero, imonoid.zero, jmonoid.zero, kmonoid.zero, lmonoid.zero, mmonoid.zero, nmonoid.zero, omonoid.zero, pmonoid.zero, qmonoid.zero, rmonoid.zero, smonoid.zero, tmonoid.zero, umonoid.zero, vmonoid.zero)
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)) = (amonoid.plus(l._1, r._1), bmonoid.plus(l._2, r._2), cmonoid.plus(l._3, r._3), dmonoid.plus(l._4, r._4), emonoid.plus(l._5, r._5), fmonoid.plus(l._6, r._6), gmonoid.plus(l._7, r._7), hmonoid.plus(l._8, r._8), imonoid.plus(l._9, r._9), jmonoid.plus(l._10, r._10), kmonoid.plus(l._11, r._11), lmonoid.plus(l._12, r._12), mmonoid.plus(l._13, r._13), nmonoid.plus(l._14, r._14), omonoid.plus(l._15, r._15), pmonoid.plus(l._16, r._16), qmonoid.plus(l._17, r._17), rmonoid.plus(l._18, r._18), smonoid.plus(l._19, r._19), tmonoid.plus(l._20, r._20), umonoid.plus(l._21, r._21), vmonoid.plus(l._22, r._22))
}
/**
* Combine 22 groups into a product group
*/
class Tuple22Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R], sgroup : Group[S], tgroup : Group[T], ugroup : Group[U], vgroup : Group[V]) extends Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)] {
override def zero = (agroup.zero, bgroup.zero, cgroup.zero, dgroup.zero, egroup.zero, fgroup.zero, ggroup.zero, hgroup.zero, igroup.zero, jgroup.zero, kgroup.zero, lgroup.zero, mgroup.zero, ngroup.zero, ogroup.zero, pgroup.zero, qgroup.zero, rgroup.zero, sgroup.zero, tgroup.zero, ugroup.zero, vgroup.zero)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)) = (agroup.negate(v._1), bgroup.negate(v._2), cgroup.negate(v._3), dgroup.negate(v._4), egroup.negate(v._5), fgroup.negate(v._6), ggroup.negate(v._7), hgroup.negate(v._8), igroup.negate(v._9), jgroup.negate(v._10), kgroup.negate(v._11), lgroup.negate(v._12), mgroup.negate(v._13), ngroup.negate(v._14), ogroup.negate(v._15), pgroup.negate(v._16), qgroup.negate(v._17), rgroup.negate(v._18), sgroup.negate(v._19), tgroup.negate(v._20), ugroup.negate(v._21), vgroup.negate(v._22))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)) = (agroup.plus(l._1, r._1), bgroup.plus(l._2, r._2), cgroup.plus(l._3, r._3), dgroup.plus(l._4, r._4), egroup.plus(l._5, r._5), fgroup.plus(l._6, r._6), ggroup.plus(l._7, r._7), hgroup.plus(l._8, r._8), igroup.plus(l._9, r._9), jgroup.plus(l._10, r._10), kgroup.plus(l._11, r._11), lgroup.plus(l._12, r._12), mgroup.plus(l._13, r._13), ngroup.plus(l._14, r._14), ogroup.plus(l._15, r._15), pgroup.plus(l._16, r._16), qgroup.plus(l._17, r._17), rgroup.plus(l._18, r._18), sgroup.plus(l._19, r._19), tgroup.plus(l._20, r._20), ugroup.plus(l._21, r._21), vgroup.plus(l._22, r._22))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)) = (agroup.minus(l._1, r._1), bgroup.minus(l._2, r._2), cgroup.minus(l._3, r._3), dgroup.minus(l._4, r._4), egroup.minus(l._5, r._5), fgroup.minus(l._6, r._6), ggroup.minus(l._7, r._7), hgroup.minus(l._8, r._8), igroup.minus(l._9, r._9), jgroup.minus(l._10, r._10), kgroup.minus(l._11, r._11), lgroup.minus(l._12, r._12), mgroup.minus(l._13, r._13), ngroup.minus(l._14, r._14), ogroup.minus(l._15, r._15), pgroup.minus(l._16, r._16), qgroup.minus(l._17, r._17), rgroup.minus(l._18, r._18), sgroup.minus(l._19, r._19), tgroup.minus(l._20, r._20), ugroup.minus(l._21, r._21), vgroup.minus(l._22, r._22))
}
/**
* Combine 22 rings into a product ring
*/
class Tuple22Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R], sring : Ring[S], tring : Ring[T], uring : Ring[U], vring : Ring[V]) extends Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)] {
override def zero = (aring.zero, bring.zero, cring.zero, dring.zero, ering.zero, fring.zero, gring.zero, hring.zero, iring.zero, jring.zero, kring.zero, lring.zero, mring.zero, nring.zero, oring.zero, pring.zero, qring.zero, rring.zero, sring.zero, tring.zero, uring.zero, vring.zero)
override def one = (aring.one, bring.one, cring.one, dring.one, ering.one, fring.one, gring.one, hring.one, iring.one, jring.one, kring.one, lring.one, mring.one, nring.one, oring.one, pring.one, qring.one, rring.one, sring.one, tring.one, uring.one, vring.one)
override def negate(v : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)) = (aring.negate(v._1), bring.negate(v._2), cring.negate(v._3), dring.negate(v._4), ering.negate(v._5), fring.negate(v._6), gring.negate(v._7), hring.negate(v._8), iring.negate(v._9), jring.negate(v._10), kring.negate(v._11), lring.negate(v._12), mring.negate(v._13), nring.negate(v._14), oring.negate(v._15), pring.negate(v._16), qring.negate(v._17), rring.negate(v._18), sring.negate(v._19), tring.negate(v._20), uring.negate(v._21), vring.negate(v._22))
override def plus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)) = (aring.plus(l._1, r._1), bring.plus(l._2, r._2), cring.plus(l._3, r._3), dring.plus(l._4, r._4), ering.plus(l._5, r._5), fring.plus(l._6, r._6), gring.plus(l._7, r._7), hring.plus(l._8, r._8), iring.plus(l._9, r._9), jring.plus(l._10, r._10), kring.plus(l._11, r._11), lring.plus(l._12, r._12), mring.plus(l._13, r._13), nring.plus(l._14, r._14), oring.plus(l._15, r._15), pring.plus(l._16, r._16), qring.plus(l._17, r._17), rring.plus(l._18, r._18), sring.plus(l._19, r._19), tring.plus(l._20, r._20), uring.plus(l._21, r._21), vring.plus(l._22, r._22))
override def minus(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)) = (aring.minus(l._1, r._1), bring.minus(l._2, r._2), cring.minus(l._3, r._3), dring.minus(l._4, r._4), ering.minus(l._5, r._5), fring.minus(l._6, r._6), gring.minus(l._7, r._7), hring.minus(l._8, r._8), iring.minus(l._9, r._9), jring.minus(l._10, r._10), kring.minus(l._11, r._11), lring.minus(l._12, r._12), mring.minus(l._13, r._13), nring.minus(l._14, r._14), oring.minus(l._15, r._15), pring.minus(l._16, r._16), qring.minus(l._17, r._17), rring.minus(l._18, r._18), sring.minus(l._19, r._19), tring.minus(l._20, r._20), uring.minus(l._21, r._21), vring.minus(l._22, r._22))
override def times(l : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V), r : (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)) = (aring.times(l._1, r._1), bring.times(l._2, r._2), cring.times(l._3, r._3), dring.times(l._4, r._4), ering.times(l._5, r._5), fring.times(l._6, r._6), gring.times(l._7, r._7), hring.times(l._8, r._8), iring.times(l._9, r._9), jring.times(l._10, r._10), kring.times(l._11, r._11), lring.times(l._12, r._12), mring.times(l._13, r._13), nring.times(l._14, r._14), oring.times(l._15, r._15), pring.times(l._16, r._16), qring.times(l._17, r._17), rring.times(l._18, r._18), sring.times(l._19, r._19), tring.times(l._20, r._20), uring.times(l._21, r._21), vring.times(l._22, r._22))
}
trait GeneratedMonoidImplicits {
implicit def monoid3[A, B, C](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C]) : Monoid[(A, B, C)] = {
new Tuple3Monoid[A, B, C]()(amonoid, bmonoid, cmonoid)
}
implicit def monoid4[A, B, C, D](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D]) : Monoid[(A, B, C, D)] = {
new Tuple4Monoid[A, B, C, D]()(amonoid, bmonoid, cmonoid, dmonoid)
}
implicit def monoid5[A, B, C, D, E](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E]) : Monoid[(A, B, C, D, E)] = {
new Tuple5Monoid[A, B, C, D, E]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid)
}
implicit def monoid6[A, B, C, D, E, F](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F]) : Monoid[(A, B, C, D, E, F)] = {
new Tuple6Monoid[A, B, C, D, E, F]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid)
}
implicit def monoid7[A, B, C, D, E, F, G](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G]) : Monoid[(A, B, C, D, E, F, G)] = {
new Tuple7Monoid[A, B, C, D, E, F, G]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid)
}
implicit def monoid8[A, B, C, D, E, F, G, H](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H]) : Monoid[(A, B, C, D, E, F, G, H)] = {
new Tuple8Monoid[A, B, C, D, E, F, G, H]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid)
}
implicit def monoid9[A, B, C, D, E, F, G, H, I](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I]) : Monoid[(A, B, C, D, E, F, G, H, I)] = {
new Tuple9Monoid[A, B, C, D, E, F, G, H, I]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid)
}
implicit def monoid10[A, B, C, D, E, F, G, H, I, J](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J]) : Monoid[(A, B, C, D, E, F, G, H, I, J)] = {
new Tuple10Monoid[A, B, C, D, E, F, G, H, I, J]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid)
}
implicit def monoid11[A, B, C, D, E, F, G, H, I, J, K](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K)] = {
new Tuple11Monoid[A, B, C, D, E, F, G, H, I, J, K]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid)
}
implicit def monoid12[A, B, C, D, E, F, G, H, I, J, K, L](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L)] = {
new Tuple12Monoid[A, B, C, D, E, F, G, H, I, J, K, L]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid)
}
implicit def monoid13[A, B, C, D, E, F, G, H, I, J, K, L, M](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M)] = {
new Tuple13Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid)
}
implicit def monoid14[A, B, C, D, E, F, G, H, I, J, K, L, M, N](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N)] = {
new Tuple14Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid)
}
implicit def monoid15[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)] = {
new Tuple15Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid, omonoid)
}
implicit def monoid16[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)] = {
new Tuple16Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid, omonoid, pmonoid)
}
implicit def monoid17[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)] = {
new Tuple17Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid, omonoid, pmonoid, qmonoid)
}
implicit def monoid18[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)] = {
new Tuple18Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid, omonoid, pmonoid, qmonoid, rmonoid)
}
implicit def monoid19[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R], smonoid : Monoid[S]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)] = {
new Tuple19Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid, omonoid, pmonoid, qmonoid, rmonoid, smonoid)
}
implicit def monoid20[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R], smonoid : Monoid[S], tmonoid : Monoid[T]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)] = {
new Tuple20Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid, omonoid, pmonoid, qmonoid, rmonoid, smonoid, tmonoid)
}
implicit def monoid21[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R], smonoid : Monoid[S], tmonoid : Monoid[T], umonoid : Monoid[U]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)] = {
new Tuple21Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid, omonoid, pmonoid, qmonoid, rmonoid, smonoid, tmonoid, umonoid)
}
implicit def monoid22[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V](implicit amonoid : Monoid[A], bmonoid : Monoid[B], cmonoid : Monoid[C], dmonoid : Monoid[D], emonoid : Monoid[E], fmonoid : Monoid[F], gmonoid : Monoid[G], hmonoid : Monoid[H], imonoid : Monoid[I], jmonoid : Monoid[J], kmonoid : Monoid[K], lmonoid : Monoid[L], mmonoid : Monoid[M], nmonoid : Monoid[N], omonoid : Monoid[O], pmonoid : Monoid[P], qmonoid : Monoid[Q], rmonoid : Monoid[R], smonoid : Monoid[S], tmonoid : Monoid[T], umonoid : Monoid[U], vmonoid : Monoid[V]) : Monoid[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)] = {
new Tuple22Monoid[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V]()(amonoid, bmonoid, cmonoid, dmonoid, emonoid, fmonoid, gmonoid, hmonoid, imonoid, jmonoid, kmonoid, lmonoid, mmonoid, nmonoid, omonoid, pmonoid, qmonoid, rmonoid, smonoid, tmonoid, umonoid, vmonoid)
}
}
trait GeneratedGroupImplicits {
implicit def group3[A, B, C](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C]) : Group[(A, B, C)] = {
new Tuple3Group[A, B, C]()(agroup, bgroup, cgroup)
}
implicit def group4[A, B, C, D](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D]) : Group[(A, B, C, D)] = {
new Tuple4Group[A, B, C, D]()(agroup, bgroup, cgroup, dgroup)
}
implicit def group5[A, B, C, D, E](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E]) : Group[(A, B, C, D, E)] = {
new Tuple5Group[A, B, C, D, E]()(agroup, bgroup, cgroup, dgroup, egroup)
}
implicit def group6[A, B, C, D, E, F](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F]) : Group[(A, B, C, D, E, F)] = {
new Tuple6Group[A, B, C, D, E, F]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup)
}
implicit def group7[A, B, C, D, E, F, G](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G]) : Group[(A, B, C, D, E, F, G)] = {
new Tuple7Group[A, B, C, D, E, F, G]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup)
}
implicit def group8[A, B, C, D, E, F, G, H](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H]) : Group[(A, B, C, D, E, F, G, H)] = {
new Tuple8Group[A, B, C, D, E, F, G, H]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup)
}
implicit def group9[A, B, C, D, E, F, G, H, I](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I]) : Group[(A, B, C, D, E, F, G, H, I)] = {
new Tuple9Group[A, B, C, D, E, F, G, H, I]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup)
}
implicit def group10[A, B, C, D, E, F, G, H, I, J](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J]) : Group[(A, B, C, D, E, F, G, H, I, J)] = {
new Tuple10Group[A, B, C, D, E, F, G, H, I, J]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup)
}
implicit def group11[A, B, C, D, E, F, G, H, I, J, K](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K]) : Group[(A, B, C, D, E, F, G, H, I, J, K)] = {
new Tuple11Group[A, B, C, D, E, F, G, H, I, J, K]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup)
}
implicit def group12[A, B, C, D, E, F, G, H, I, J, K, L](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L)] = {
new Tuple12Group[A, B, C, D, E, F, G, H, I, J, K, L]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup)
}
implicit def group13[A, B, C, D, E, F, G, H, I, J, K, L, M](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M)] = {
new Tuple13Group[A, B, C, D, E, F, G, H, I, J, K, L, M]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup)
}
implicit def group14[A, B, C, D, E, F, G, H, I, J, K, L, M, N](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N)] = {
new Tuple14Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup)
}
implicit def group15[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)] = {
new Tuple15Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup, ogroup)
}
implicit def group16[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)] = {
new Tuple16Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup, ogroup, pgroup)
}
implicit def group17[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)] = {
new Tuple17Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup, ogroup, pgroup, qgroup)
}
implicit def group18[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)] = {
new Tuple18Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup, ogroup, pgroup, qgroup, rgroup)
}
implicit def group19[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R], sgroup : Group[S]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)] = {
new Tuple19Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup, ogroup, pgroup, qgroup, rgroup, sgroup)
}
implicit def group20[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R], sgroup : Group[S], tgroup : Group[T]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)] = {
new Tuple20Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup, ogroup, pgroup, qgroup, rgroup, sgroup, tgroup)
}
implicit def group21[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R], sgroup : Group[S], tgroup : Group[T], ugroup : Group[U]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)] = {
new Tuple21Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup, ogroup, pgroup, qgroup, rgroup, sgroup, tgroup, ugroup)
}
implicit def group22[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V](implicit agroup : Group[A], bgroup : Group[B], cgroup : Group[C], dgroup : Group[D], egroup : Group[E], fgroup : Group[F], ggroup : Group[G], hgroup : Group[H], igroup : Group[I], jgroup : Group[J], kgroup : Group[K], lgroup : Group[L], mgroup : Group[M], ngroup : Group[N], ogroup : Group[O], pgroup : Group[P], qgroup : Group[Q], rgroup : Group[R], sgroup : Group[S], tgroup : Group[T], ugroup : Group[U], vgroup : Group[V]) : Group[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)] = {
new Tuple22Group[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V]()(agroup, bgroup, cgroup, dgroup, egroup, fgroup, ggroup, hgroup, igroup, jgroup, kgroup, lgroup, mgroup, ngroup, ogroup, pgroup, qgroup, rgroup, sgroup, tgroup, ugroup, vgroup)
}
}
trait GeneratedRingImplicits {
implicit def ring3[A, B, C](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C]) : Ring[(A, B, C)] = {
new Tuple3Ring[A, B, C]()(aring, bring, cring)
}
implicit def ring4[A, B, C, D](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D]) : Ring[(A, B, C, D)] = {
new Tuple4Ring[A, B, C, D]()(aring, bring, cring, dring)
}
implicit def ring5[A, B, C, D, E](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E]) : Ring[(A, B, C, D, E)] = {
new Tuple5Ring[A, B, C, D, E]()(aring, bring, cring, dring, ering)
}
implicit def ring6[A, B, C, D, E, F](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F]) : Ring[(A, B, C, D, E, F)] = {
new Tuple6Ring[A, B, C, D, E, F]()(aring, bring, cring, dring, ering, fring)
}
implicit def ring7[A, B, C, D, E, F, G](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G]) : Ring[(A, B, C, D, E, F, G)] = {
new Tuple7Ring[A, B, C, D, E, F, G]()(aring, bring, cring, dring, ering, fring, gring)
}
implicit def ring8[A, B, C, D, E, F, G, H](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H]) : Ring[(A, B, C, D, E, F, G, H)] = {
new Tuple8Ring[A, B, C, D, E, F, G, H]()(aring, bring, cring, dring, ering, fring, gring, hring)
}
implicit def ring9[A, B, C, D, E, F, G, H, I](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I]) : Ring[(A, B, C, D, E, F, G, H, I)] = {
new Tuple9Ring[A, B, C, D, E, F, G, H, I]()(aring, bring, cring, dring, ering, fring, gring, hring, iring)
}
implicit def ring10[A, B, C, D, E, F, G, H, I, J](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J]) : Ring[(A, B, C, D, E, F, G, H, I, J)] = {
new Tuple10Ring[A, B, C, D, E, F, G, H, I, J]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring)
}
implicit def ring11[A, B, C, D, E, F, G, H, I, J, K](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K]) : Ring[(A, B, C, D, E, F, G, H, I, J, K)] = {
new Tuple11Ring[A, B, C, D, E, F, G, H, I, J, K]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring)
}
implicit def ring12[A, B, C, D, E, F, G, H, I, J, K, L](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L)] = {
new Tuple12Ring[A, B, C, D, E, F, G, H, I, J, K, L]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring)
}
implicit def ring13[A, B, C, D, E, F, G, H, I, J, K, L, M](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M)] = {
new Tuple13Ring[A, B, C, D, E, F, G, H, I, J, K, L, M]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring)
}
implicit def ring14[A, B, C, D, E, F, G, H, I, J, K, L, M, N](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N)] = {
new Tuple14Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring)
}
implicit def ring15[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)] = {
new Tuple15Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring, oring)
}
implicit def ring16[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)] = {
new Tuple16Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring, oring, pring)
}
implicit def ring17[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)] = {
new Tuple17Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring, oring, pring, qring)
}
implicit def ring18[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)] = {
new Tuple18Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring, oring, pring, qring, rring)
}
implicit def ring19[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R], sring : Ring[S]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)] = {
new Tuple19Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring, oring, pring, qring, rring, sring)
}
implicit def ring20[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R], sring : Ring[S], tring : Ring[T]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)] = {
new Tuple20Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring, oring, pring, qring, rring, sring, tring)
}
implicit def ring21[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R], sring : Ring[S], tring : Ring[T], uring : Ring[U]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)] = {
new Tuple21Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring, oring, pring, qring, rring, sring, tring, uring)
}
implicit def ring22[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V](implicit aring : Ring[A], bring : Ring[B], cring : Ring[C], dring : Ring[D], ering : Ring[E], fring : Ring[F], gring : Ring[G], hring : Ring[H], iring : Ring[I], jring : Ring[J], kring : Ring[K], lring : Ring[L], mring : Ring[M], nring : Ring[N], oring : Ring[O], pring : Ring[P], qring : Ring[Q], rring : Ring[R], sring : Ring[S], tring : Ring[T], uring : Ring[U], vring : Ring[V]) : Ring[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)] = {
new Tuple22Ring[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V]()(aring, bring, cring, dring, ering, fring, gring, hring, iring, jring, kring, lring, mring, nring, oring, pring, qring, rring, sring, tring, uring, vring)
}
}