All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.algorithm.HCoordinate Maven / Gradle / Ivy

Go to download

The JTS Topology Suite is an API for modelling and manipulating 2-dimensional linear geometry. It provides numerous geometric predicates and functions. JTS conforms to the Simple Features Specification for SQL published by the Open GIS Consortium.

There is a newer version: 1.13
Show newest version
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*
* For more information, contact:
*
*     Vivid Solutions
*     Suite #1A
*     2328 Government Street
*     Victoria BC  V8T 5G5
*     Canada
*
*     (250)385-6040
*     www.vividsolutions.com
 */
package com.vividsolutions.jts.algorithm;

import com.vividsolutions.jts.geom.*;

/**
 * Represents a homogeneous coordinate in a 2-D coordinate space.
 * In JTS {@link HCoordinate}s are used as a clean way
 * of computing intersections between line segments.
 *
 * @author David Skea
 * @version 1.7
 */
public class HCoordinate
{

  /**
   * Computes the (approximate) intersection point between two line segments
   * using homogeneous coordinates.
   * 

* Note that this algorithm is * not numerically stable; i.e. it can produce intersection points which * lie outside the envelope of the line segments themselves. In order * to increase the precision of the calculation input points should be normalized * before passing them to this routine. */ public static Coordinate intersection( Coordinate p1, Coordinate p2, Coordinate q1, Coordinate q2) throws NotRepresentableException { // unrolled computation double px = p1.y - p2.y; double py = p2.x - p1.x; double pw = p1.x * p2.y - p2.x * p1.y; double qx = q1.y - q2.y; double qy = q2.x - q1.x; double qw = q1.x * q2.y - q2.x * q1.y; double x = py * qw - qy * pw; double y = qx * pw - px * qw; double w = px * qy - qx * py; double xInt = x/w; double yInt = y/w; if ((Double.isNaN(xInt)) || (Double.isInfinite(xInt) || Double.isNaN(yInt)) || (Double.isInfinite(yInt))) { throw new NotRepresentableException(); } return new Coordinate(xInt, yInt); } /* public static Coordinate OLDintersection( Coordinate p1, Coordinate p2, Coordinate q1, Coordinate q2) throws NotRepresentableException { HCoordinate l1 = new HCoordinate(p1, p2); HCoordinate l2 = new HCoordinate(q1, q2); HCoordinate intHCoord = new HCoordinate(l1, l2); Coordinate intPt = intHCoord.getCoordinate(); return intPt; } */ public double x,y,w; public HCoordinate() { x = 0.0; y = 0.0; w = 1.0; } public HCoordinate(double _x, double _y, double _w) { x = _x; y = _y; w = _w; } public HCoordinate(double _x, double _y) { x = _x; y = _y; w = 1.0; } public HCoordinate(Coordinate p) { x = p.x; y = p.y; w = 1.0; } public HCoordinate(HCoordinate p1, HCoordinate p2) { x = p1.y * p2.w - p2.y * p1.w; y = p2.x * p1.w - p1.x * p2.w; w = p1.x * p2.y - p2.x * p1.y; } /** * Constructs a homogeneous coordinate which is the intersection of the lines * define by the homogenous coordinates represented by two * {@link Coordinate}s. * * @param p1 * @param p2 */ public HCoordinate(Coordinate p1, Coordinate p2) { // optimization when it is known that w = 1 x = p1.y - p2.y; y = p2.x - p1.x; w = p1.x * p2.y - p2.x * p1.y; } public HCoordinate(Coordinate p1, Coordinate p2, Coordinate q1, Coordinate q2) { // unrolled computation double px = p1.y - p2.y; double py = p2.x - p1.x; double pw = p1.x * p2.y - p2.x * p1.y; double qx = q1.y - q2.y; double qy = q2.x - q1.x; double qw = q1.x * q2.y - q2.x * q1.y; x = py * qw - qy * pw; y = qx * pw - px * qw; w = px * qy - qx * py; } public double getX() throws NotRepresentableException { double a = x/w; if ((Double.isNaN(a)) || (Double.isInfinite(a))) { throw new NotRepresentableException(); } return a; } public double getY() throws NotRepresentableException { double a = y/w; if ((Double.isNaN(a)) || (Double.isInfinite(a))) { throw new NotRepresentableException(); } return a; } public Coordinate getCoordinate() throws NotRepresentableException { Coordinate p = new Coordinate(); p.x = getX(); p.y = getY(); return p; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy