All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.collections.comparators.ComparatorChain Maven / Gradle / Ivy

There is a newer version: 20040616
Show newest version
/* ====================================================================
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 1999-2004 The Apache Software Foundation.  All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. The end-user documentation included with the redistribution, if
 *    any, must include the following acknowledgement:
 *       "This product includes software developed by the
 *        Apache Software Foundation (http://www.apache.org/)."
 *    Alternately, this acknowledgement may appear in the software itself,
 *    if and wherever such third-party acknowledgements normally appear.
 *
 * 4. The names "The Jakarta Project", "Commons", and "Apache Software
 *    Foundation" must not be used to endorse or promote products derived
 *    from this software without prior written permission. For written
 *    permission, please contact [email protected].
 *
 * 5. Products derived from this software may not be called "Apache"
 *    nor may "Apache" appear in their names without prior written
 *    permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ====================================================================
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation.  For more
 * information on the Apache Software Foundation, please see
 * .
 */
package org.apache.commons.collections.comparators;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.BitSet;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;

/**
 * 

A ComparatorChain is a Comparator that wraps one or * more Comparators in sequence. The ComparatorChain * calls each Comparator in sequence until either 1) * any single Comparator returns a non-zero result * (and that result is then returned), * or 2) the ComparatorChain is exhausted (and zero is * returned). This type of sorting is very similar * to multi-column sorting in SQL, and this class * allows Java classes to emulate that kind of behaviour * when sorting a List.

* *

To further facilitate SQL-like sorting, the order of * any single Comparator in the list can be reversed.

* *

Calling a method that adds new Comparators or * changes the ascend/descend sort after compare(Object, * Object) has been called will result in an * UnsupportedOperationException. However, take care * to not alter the underlying List of Comparators * or the BitSet that defines the sort order.

* *

Instances of ComparatorChain are not synchronized. * The class is not thread-safe at construction time, but * it is thread-safe to perform multiple comparisons * after all the setup operations are complete.

* * @since Commons Collections 2.0 * @author Morgan Delagrange * @version $Revision: 1.15 $ $Date: 2004/01/14 21:43:18 $ */ public class ComparatorChain implements Comparator,Serializable { protected List comparatorChain = null; // false (clear) = ascend; true (set) = descend protected BitSet orderingBits = null; // ComparatorChain is "locked" after the first time // compare(Object,Object) is called protected boolean isLocked = false; /** * Construct a ComparatorChain with no Comparators. * You must add at least one Comparator before calling * the compare(Object,Object) method, or an * UnsupportedOperationException is thrown */ public ComparatorChain() { this(new ArrayList(),new BitSet()); } /** * Construct a ComparatorChain with a single Comparator, * sorting in the forward order * * @param comparator First comparator in the Comparator chain */ public ComparatorChain(Comparator comparator) { this(comparator,false); } /** * Construct a Comparator chain with a single Comparator, * sorting in the given order * * @param comparator First Comparator in the ComparatorChain * @param reverse false = forward sort; true = reverse sort */ public ComparatorChain(Comparator comparator, boolean reverse) { comparatorChain = new ArrayList(); comparatorChain.add(comparator); orderingBits = new BitSet(1); if (reverse == true) { orderingBits.set(0); } } /** * Construct a ComparatorChain from the Comparators in the * List. All Comparators will default to the forward * sort order. * * @param list List of Comparators * @see #ComparatorChain(List,BitSet) */ public ComparatorChain(List list) { this(list,new BitSet(list.size())); } /** * Construct a ComparatorChain from the Comparators in the * given List. The sort order of each column will be * drawn from the given BitSet. When determining the sort * order for Comparator at index i in the List, * the ComparatorChain will call BitSet.get(i). * If that method returns false, the forward * sort order is used; a return value of true * indicates reverse sort order. * * @param list List of Comparators. NOTE: This constructor does not perform a * defensive copy of the list * @param bits Sort order for each Comparator. Extra bits are ignored, * unless extra Comparators are added by another method. */ public ComparatorChain(List list, BitSet bits) { comparatorChain = list; orderingBits = bits; } /** * Add a Comparator to the end of the chain using the * forward sort order * * @param comparator Comparator with the forward sort order */ public void addComparator(Comparator comparator) { addComparator(comparator,false); } /** * Add a Comparator to the end of the chain using the * given sort order * * @param comparator Comparator to add to the end of the chain * @param reverse false = forward sort order; true = reverse sort order */ public void addComparator(Comparator comparator, boolean reverse) { checkLocked(); comparatorChain.add(comparator); if (reverse == true) { orderingBits.set(comparatorChain.size() - 1); } } /** * Replace the Comparator at the given index, maintaining * the existing sort order. * * @param index index of the Comparator to replace * @param comparator Comparator to place at the given index * @exception IndexOutOfBoundsException * if index < 0 or index >= size() */ public void setComparator(int index, Comparator comparator) throws IndexOutOfBoundsException { setComparator(index,comparator,false); } /** * Replace the Comparator at the given index in the * ComparatorChain, using the given sort order * * @param index index of the Comparator to replace * @param comparator Comparator to set * @param reverse false = forward sort order; true = reverse sort order */ public void setComparator(int index, Comparator comparator, boolean reverse) { checkLocked(); comparatorChain.set(index,comparator); if (reverse == true) { orderingBits.set(index); } else { orderingBits.clear(index); } } /** * Change the sort order at the given index in the * ComparatorChain to a forward sort. * * @param index Index of the ComparatorChain */ public void setForwardSort(int index) { checkLocked(); orderingBits.clear(index); } /** * Change the sort order at the given index in the * ComparatorChain to a reverse sort. * * @param index Index of the ComparatorChain */ public void setReverseSort(int index) { checkLocked(); orderingBits.set(index); } /** * Number of Comparators in the current ComparatorChain. * * @return Comparator count */ public int size() { return comparatorChain.size(); } /** * Determine if modifications can still be made to the * ComparatorChain. ComparatorChains cannot be modified * once they have performed a comparison. * * @return true = ComparatorChain cannot be modified; false = * ComparatorChain can still be modified. */ public boolean isLocked() { return isLocked; } // throw an exception if the ComparatorChain is locked private void checkLocked() { if (isLocked == true) { throw new UnsupportedOperationException("Comparator ordering cannot be changed after the first comparison is performed"); } } private void checkChainIntegrity() { if (comparatorChain.size() == 0) { throw new UnsupportedOperationException("ComparatorChains must contain at least one Comparator"); } } /** * Perform comparisons on the Objects as per * Comparator.compare(o1,o2). * * @param o1 object 1 * @param o2 object 2 * @return -1, 0, or 1 * @exception UnsupportedOperationException * if the ComparatorChain does not contain at least one * Comparator */ public int compare(Object o1, Object o2) throws UnsupportedOperationException { if (isLocked == false) { checkChainIntegrity(); isLocked = true; } // iterate over all comparators in the chain Iterator comparators = comparatorChain.iterator(); for (int comparatorIndex = 0; comparators.hasNext(); ++comparatorIndex) { Comparator comparator = (Comparator) comparators.next(); int retval = comparator.compare(o1,o2); if (retval != 0) { // invert the order if it is a reverse sort if (orderingBits.get(comparatorIndex) == true) { if(Integer.MIN_VALUE == retval) { retval = Integer.MAX_VALUE; } else { retval *= -1; } } return retval; } } // if comparators are exhausted, return 0 return 0; } /** * Implement a hash code for this comparator that is consistent with * {@link #equals}. * * @since Commons Collections 3.0 */ public int hashCode() { int hash = 0; if(null != comparatorChain) { hash ^= comparatorChain.hashCode(); } if(null != orderingBits) { hash ^= orderingBits.hashCode(); } return hash; } /** * Returns true iff that Object is * is a {@link Comparator} whose ordering is known to be * equivalent to mine. *

* This implementation returns true * iff that.{@link Object#getClass getClass()} * equals this.getClass(), and the underlying * comparators and order bits are equal. Subclasses may want * to override this behavior to remain consistent with the * {@link Comparator#equals} contract. * * @since Commons Collections 3.0 */ public boolean equals(Object that) { if(this == that) { return true; } else if(null == that) { return false; } else if(that.getClass().equals(this.getClass())) { ComparatorChain chain = (ComparatorChain)that; return ( (null == orderingBits ? null == chain.orderingBits : orderingBits.equals(chain.orderingBits)) && (null == comparatorChain ? null == chain.comparatorChain : comparatorChain.equals(chain.comparatorChain)) ); } else { return false; } } // use serialVersionUID from Collections 2.0 for interoperability private static final long serialVersionUID = -721644942746081630L; }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy