Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
de.bixilon.kotlinglm.ext.ext_QuaternionCommon.kt Maven / Gradle / Ivy
package de.bixilon.kotlinglm.ext
import de.bixilon.kotlinglm.GLM
import de.bixilon.kotlinglm.quaternion.Quat
import de.bixilon.kotlinglm.quaternion.QuatD
interface ext_QuaternionCommon {
/** Spherical linear interpolation of two quaternions.
* The interpolation is oriented main.and the rotation is performed at constant speed.
* For short path spherical linear interpolation, use the slerp function. */
fun mix(a: Quat, b: Quat, interp: Float, res: Quat): Quat {
val cosTheta = GLM.dot(a, b)
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if (cosTheta > 1f - GLM.epsilonF) {
// Linear interpolation
res.w = GLM.mix(a.w, b.w, interp)
res.x = GLM.mix(a.x, b.x, interp)
res.y = GLM.mix(a.y, b.y, interp)
res.z = GLM.mix(a.z, b.z, interp)
return res
} else {
// Essential Mathematics, page 467
val angle = GLM.acos(cosTheta)
val s0 = GLM.sin((1f - interp) * angle)
val s1 = GLM.sin(interp * angle)
val s2 = GLM.sin(angle)
res.w = (s0 * a.w + s1 * b.w) / s2
res.x = (s0 * a.x + s1 * b.x) / s2
res.y = (s0 * a.y + s1 * b.y) / s2
res.z = (s0 * a.z + s1 * b.z) / s2
return res
}
}
fun mix(a: Quat, b: Quat, interp: Float): Quat =
mix(a, b, interp, Quat())
/** Spherical linear interpolation of two quaternions.
* The interpolation is oriented main.and the rotation is performed at constant speed.
* For short path spherical linear interpolation, use the slerp function. */
fun mix(a: QuatD, b: QuatD, interp: Double, res: QuatD): QuatD {
val cosTheta = GLM.dot(a, b)
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if (cosTheta > 1.0 - GLM.epsilon) {
// Linear interpolation
res.w = GLM.mix(a.w, b.w, interp)
res.x = GLM.mix(a.x, b.x, interp)
res.y = GLM.mix(a.y, b.y, interp)
res.z = GLM.mix(a.z, b.z, interp)
return res
} else {
// Essential Mathematics, page 467
val angle = GLM.acos(cosTheta)
val s0 = GLM.sin((1.0 - interp) * angle)
val s1 = GLM.sin(interp * angle)
val s2 = GLM.sin(angle)
res.w = (s0 * a.w + s1 * b.w) / s2
res.x = (s0 * a.x + s1 * b.x) / s2
res.y = (s0 * a.y + s1 * b.y) / s2
res.z = (s0 * a.z + s1 * b.z) / s2
return res
}
}
fun mix(a: QuatD, b: QuatD, interp: Double): QuatD =
mix(a, b, interp, QuatD())
/** Linear interpolation of two quaternions.
* The interpolation is oriented. */
fun lerp(a: Quat, b: Quat, interp: Float, res: Quat): Quat {
// Lerp is only defined in [0, 1]
if (interp < 0f || interp > 1f)
throw ArithmeticException("interp outside [0, 1]")
res.w = a.w * (1f - interp) + b.w * interp
res.x = a.x * (1f - interp) + b.x * interp
res.y = a.y * (1f - interp) + b.y * interp
res.z = a.z * (1f - interp) + b.z * interp
return res
}
fun lerp(a: Quat, b: Quat, interp: Float): Quat =
lerp(a, b, interp, Quat())
/** Linear interpolation of two quaternions.
* The interpolation is oriented. */
fun lerp(a: QuatD, b: QuatD, interp: Double, res: QuatD): QuatD {
// Lerp is only defined in [0, 1]
if (interp < 0.0 || interp > 1.0)
throw ArithmeticException("interp outside [0, 1]")
res.w = a.w * (1.0 - interp) + b.w * interp
res.x = a.x * (1.0 - interp) + b.x * interp
res.y = a.y * (1.0 - interp) + b.y * interp
res.z = a.z * (1.0 - interp) + b.z * interp
return res
}
fun lerp(a: QuatD, b: QuatD, interp: Double): QuatD =
lerp(a, b, interp, QuatD())
/** Spherical linear interpolation of two quaternions.
* The interpolation always take the short path main.and the rotation is performed at constant speed. */
fun slerp(a: Quat, b: Quat, interp: Float, res: Quat): Quat {
var zW = b.w
var zX = b.x
var zY = b.y
var zZ = b.z
var cosTheta = GLM.dot(a, b)
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if (cosTheta < 0f) {
zW = -b.w
zX = -b.x
zY = -b.y
zZ = -b.z
cosTheta = -cosTheta
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if (cosTheta > 1f - GLM._epsilonF) {
// Linear interpolation
res.w = GLM.mix(a.w, zW, interp)
res.x = GLM.mix(a.x, zX, interp)
res.y = GLM.mix(a.y, zY, interp)
res.z = GLM.mix(a.z, zZ, interp)
return res
} else {
// Essential Mathematics, page 467
val angle = GLM.acos(cosTheta)
val s0 = GLM.sin((1f - interp) * angle)
val s1 = GLM.sin(interp * angle)
val s2 = GLM.sin(angle)
res.w = (s0 * a.w + s1 * zW) / s2
res.x = (s0 * a.x + s1 * zX) / s2
res.y = (s0 * a.y + s1 * zY) / s2
res.z = (s0 * a.z + s1 * zZ) / s2
return res
}
}
fun slerp(a: Quat, b: Quat, interp: Float): Quat =
slerp(a, b, interp, Quat())
/** Spherical linear interpolation of two quaternions.
* The interpolation always take the short path main.and the rotation is performed at constant speed. */
fun slerp(a: QuatD, b: QuatD, interp: Double, res: QuatD): QuatD {
var zW = b.w
var zX = b.x
var zY = b.y
var zZ = b.z
var cosTheta = GLM.dot(a, b)
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if (cosTheta < 0.0) {
zW = -b.w
zX = -b.x
zY = -b.y
zZ = -b.z
cosTheta = -cosTheta
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if (cosTheta > 1.0 - GLM.epsilon) {
// Linear interpolation
res.w = GLM.mix(a.w, zW, interp)
res.x = GLM.mix(a.x, zX, interp)
res.y = GLM.mix(a.y, zY, interp)
res.z = GLM.mix(a.z, zZ, interp)
return res
} else {
// Essential Mathematics, page 467
val angle = GLM.acos(cosTheta)
val s0 = GLM.sin((1.0 - interp) * angle)
val s1 = GLM.sin(interp * angle)
val s2 = GLM.sin(angle)
res.w = (s0 * a.w + s1 * b.w) / s2
res.x = (s0 * a.x + s1 * b.x) / s2
res.y = (s0 * a.y + s1 * b.y) / s2
res.z = (s0 * a.z + s1 * b.z) / s2
return res
}
}
fun slerp(a: QuatD, b: QuatD, interp: Double): QuatD =
slerp(a, b, interp, QuatD())
/** Returns the q conjugate. */
fun conjugate(a: Quat, res: Quat): Quat {
res.w = a.w
res.x = -a.x
res.y = -a.y
res.z = -a.z
return res
}
infix fun conjugate(a: Quat): Quat =
conjugate(a, Quat())
/** Returns the q conjugate. */
fun conjugate(a: QuatD, res: QuatD): QuatD {
res.w = a.w
res.x = -a.x
res.y = -a.y
res.z = -a.z
return res
}
infix fun conjugate(a: QuatD): QuatD =
conjugate(a, QuatD())
/** Returns the q inverse. */
fun inverse(a: Quat, res: Quat): Quat {
val dot = GLM.dot(a, a)
res.w = a.w / dot
res.x = -a.x / dot
res.y = -a.y / dot
res.z = -a.z / dot
return res
}
infix fun inverse(a: Quat): Quat =
inverse(a, Quat())
/** Returns the q inverse. */
fun inverse(a: QuatD, res: QuatD): QuatD {
val dot = GLM.dot(a, a)
res.w = a.w / dot
res.x = -a.x / dot
res.y = -a.y / dot
res.z = -a.z / dot
return res
}
infix fun inverse(a: QuatD): QuatD =
inverse(a, QuatD())
/// Returns true if x holds a NaN (not a number)
/// representation in the underlying implementation's set of
/// floating point representations. Returns false otherwise,
/// including for implementations with no NaN
/// representations.
///
/// /!\ When using compiler fast math, this function may fail.
///
/// @tparam T Floating-point scalar types.
///
/// @see ext_quaternion_common
// template
// GLM_FUNC_DECL vec<4, bool, Q> isnan(qua const & x);
//
// /// Returns true if x holds a positive infinity or negative
// /// infinity representation in the underlying implementation's
// /// set of floating point representations. Returns false
// /// otherwise, including for implementations with no infinity
// /// representations.
// ///
// /// @tparam T Floating-point scalar types.
// ///
// /// @see ext_quaternion_common
// template
// GLM_FUNC_DECL vec<4, bool, Q> isinf(qua const & x);
}