Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package de.bixilon.kotlinglm.gtx
import de.bixilon.kotlinglm.GLM
import kotlin.math.cos
import kotlin.math.sin
import kotlin.math.sqrt
interface gtx_Easing {
/** Modelled after the line y = x
* @see gtx_easing */
fun linearInterpolation(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return a
}
/** Modelled after the parabola y = x^2
* @see gtx_easing */
fun quadraticEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return a * a
}
/** Modelled after the parabola y = -x^2 + 2x
* @see gtx_easing */
fun quadraticEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return -(a * (a - 2f))
}
/** Modelled after the piecewise quadratic
* y = (1/2)((2x)^2) ; [0, 0.5)
* y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
* @see gtx_easing */
fun quadraticEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 0.5f -> 2f * a * a
else -> -2f * a * a + 4 * a - 1f
}
}
/** Modelled after the cubic y = x^3 */
fun cubicEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return a * a * a
}
/** Modelled after the cubic y = (x - 1)^3 + 1
* @see gtx_easing */
fun cubicEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
val f = a - 1f
return f * f * f + 1f
}
/** Modelled after the piecewise cubic
* y = (1/2)((2x)^3) ; [0, 0.5)
* y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
* @see gtx_easing */
fun cubicEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 0.5f -> 4f * a * a * a
else -> {
val f = 2f * a - 2f
0.5f * f * f * f + 1f
}
}
}
/** Modelled after the quartic x^4
* @see gtx_easing */
fun quarticEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return a * a * a * a
}
/** Modelled after the quartic y = 1 - (x - 1)^4
* @see gtx_easing */
fun quarticEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
val f = a - 1f
return f * f * f * (1f - a) + 1f
}
/** Modelled after the piecewise quartic
* y = (1/2)((2x)^4) ; [0, 0.5)
* y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
* @see gtx_easing */
fun quarticEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 0.5f -> 8f * a * a * a * a
else -> {
val f = a - 1f
-8f * f * f * f * f + 1f
}
}
}
/** Modelled after the quintic y = x^5
* @see gtx_easing */
fun quinticEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return a * a * a * a * a
}
/** Modelled after the quintic y = (x - 1)^5 + 1
* @see gtx_easing */
fun quinticEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
val f = a - 1f
return f * f * f * f * f + 1f
}
/** Modelled after the piecewise quintic
* y = (1/2)((2x)^5) ; [0, 0.5)
* y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
* @see gtx_easing */
fun quinticEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 0.5f -> 16f * a * a * a * a * a
else -> {
val f = 2f * a - 2f
0.5f * f * f * f * f * f + 1f
}
}
}
/** Modelled after quarter-cycle of sine wave
* @see gtx_easing */
fun sineEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return sin((a - 1f) * GLM.HPIf) + 1f
}
/** Modelled after quarter-cycle of sine wave (different phase)
* @see gtx_easing */
fun sineEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return sin(a * GLM.HPIf)
}
/** Modelled after half sine wave
* @see gtx_easing */
fun sineEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return 0.5f * (1f - cos(a * GLM.PIf))
}
/** Modelled after shifted quadrant IV of unit circle
* @see gtx_easing */
fun circularEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return 1f - sqrt(1f - a * a)
}
/** Modelled after shifted quadrant II of unit circle
* @see gtx_easing */
fun circularEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return sqrt((2f - a) * a)
}
/** Modelled after the piecewise circular function
* y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
* y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
* @see gtx_easing */
fun circularEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 0.5f -> 0.5f * (1f - sqrt(1f - 4f * (a * a)))
else -> 0.5f * (sqrt(-(2f * a - 3f) * (2f * a - 1f)) + 1f)
}
}
/** Modelled after the exponential function y = 2^(10(x - 1))
* @see gtx_easing */
fun exponentialEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a <= 0f -> a
else -> {
val complementary = a - 1f
val two = 2f
GLM.pow(two, complementary * 10f)
}
}
}
/** Modelled after the exponential function y = -2^(-10x) + 1
* @see gtx_easing */
fun exponentialEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a >= 1f -> a
else -> 1f - GLM.pow(2f, -10f * a)
}
}
/** Modelled after the piecewise exponential
* y = (1/2)2^(10(2x - 1)) ; [0,0.5)
* y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
* @see gtx_easing */
fun exponentialEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 0.5f -> 0.5f * GLM.pow(2f, 20f * a - 10f)
else -> -0.5f * GLM.pow(2f, -20f * a + 10f) + 1f
}
}
/** Modelled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
* @see gtx_easing */
fun elasticEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return sin(13f * GLM.HPIf * a) * GLM.pow(2f, 10f * (a - 1f))
}
/** Modelled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
* @see gtx_easing */
fun elasticEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return sin(-13f * GLM.HPIf * (a + 1f)) * GLM.pow(2f, -10f * a) + 1f
}
/** Modelled after the piecewise exponentially-damped sine wave:
* y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
* y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
* @see gtx_easing */
fun elasticEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 0.5f -> 0.5f * sin(13f * GLM.HPIf * (2f * a)) * GLM.pow(2f, 10f * (2f * a - 1f))
else -> 0.5f * (sin(-13f * GLM.HPIf * (2f * a)) * GLM.pow(2f, -10f * (2f * a - 1f)) + 2f)
}
}
/** @see gtx_easing */
fun backEaseIn(a: Float): Float = backEaseIn(a, 1.70158f)
/** @see gtx_easing */
fun backEaseOut(a: Float): Float = backEaseOut(a, 1.70158f)
/** @see gtx_easing */
fun backEaseInOut(a: Float): Float = backEaseInOut(a, 1.70158f)
/** @param a parameter
* @param o Optional overshoot modifier
* @see gtx_easing */
fun backEaseIn(a: Float, o: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
val z = ((o + 1f) * a) - o
return a * a * z
}
/** @param a parameter
* @param o Optional overshoot modifier
* @see gtx_easing */
fun backEaseOut(a: Float, o: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
val n = a - 1f
val z = ((o + 1f) * n) + o
return n * n * z + 1f
}
/** @param a parameter
* @param o Optional overshoot modifier
* @see gtx_easing */
fun backEaseInOut(a: Float, o: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
val s = o * 1.525f
val x = 0.5f
var n = a / 0.5f
return when {
n < 1f -> {
val z = ((s + 1f) * n) - s
val m = n * n * z
x * m
}
else -> {
n -= 2
val z = (s + 1f) * n + s
val m = n * n * z + 2f
x * m
}
}
}
/** @see gtx_easing */
fun bounceEaseIn(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return 1f - bounceEaseOut(1 - a)
}
/** @see gtx_easing */
fun bounceEaseOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 4f / 11f -> (121f * a * a) / 16f
a < 8f / 11f -> (363f / 40f) * a * a - (99f / 10f) * a + 17f / 5f
a < 9f / 10f -> (4356f / 361f) * a * a - (35442f / 1805f) * a + 16061f / 1805f
else -> (54f / 5f) * a * a - (513f / 25f) * a + 268f / 25f
}
}
/** @see gtx_easing */
fun bounceEaseInOut(a: Float): Float {
// Only defined in [0, 1]
assert(a in 0f..1f)
return when {
a < 0.5f -> 0.5f * (1f - bounceEaseOut(a * 2f))
else -> 0.5f * bounceEaseOut(a * 2f - 1f) + 0.5f
}
}
}