de.datexis.index.encoder.EntityEncoder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of texoo-entity-linking Show documentation
Show all versions of texoo-entity-linking Show documentation
TeXoo module for Entity Linking
The newest version!
package de.datexis.index.encoder;
import de.datexis.common.Resource;
import de.datexis.encoder.Encoder;
import de.datexis.index.ArticleRef;
import de.datexis.index.WikiDataArticle;
import de.datexis.model.Annotation;
import de.datexis.model.Document;
import de.datexis.model.Span;
import de.datexis.preprocess.MinimalLowercasePreprocessor;
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer;
import org.deeplearning4j.models.paragraphvectors.ParagraphVectors;
import org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory;
import org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.ops.transforms.Transforms;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.util.Collection;
/**
*
* @author Sebastian Arnold
*/
public class EntityEncoder extends Encoder {
protected final static Logger log = LoggerFactory.getLogger(EntityEncoder.class);
public static enum Strategy { NAME, NAME_CONTEXT };
protected ParagraphVectors parvec;
protected Strategy strategy;
public EntityEncoder(Resource paragraphVectors, Strategy strategy) throws IOException {
loadModel(paragraphVectors);
this.strategy = strategy;
}
@Override
public void loadModel(Resource paragraphVectors) throws IOException {
log.info("loading paragraph vectors...");
parvec = WordVectorSerializer.readParagraphVectors(paragraphVectors.getInputStream());
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new MinimalLowercasePreprocessor());
parvec.setTokenizerFactory(t);
log.info("loaded " + parvec.getLabelsSource().getLabels().size() + " paragraph labels with size " + parvec.getLayerSize());
}
@Override
public long getEmbeddingVectorSize() {
if(strategy.equals(Strategy.NAME)) return parvec.getLayerSize();
else if(strategy.equals(Strategy.NAME_CONTEXT)) return parvec.getLayerSize() * 2;
else throw new IllegalArgumentException("invalid strategy");
}
public INDArray encodeEntity(WikiDataArticle art) {
return encodeEntity(art.getId(), art.getTitle(), art.getDescription());
}
public INDArray encodeEntity(ArticleRef ref) {
return encodeEntity(ref.getId(), ref.getTitle(), ref.getDescription());
}
private INDArray encodeEntity(String id, String title, String description) {
INDArray nameEmbedding = encodeID(id, title);
if(strategy.equals(Strategy.NAME)) {
//if(nameEmbedding.sumNumber().intValue() == 0) nameEmbedding = contextEmbedding;
return nameEmbedding;
} else if(strategy.equals(Strategy.NAME_CONTEXT)) {
// TODO: deactivated because results were bad
String context = title;
if(description != null) context += " " + description;
INDArray contextEmbedding = encode(context);
if(contextEmbedding.maxNumber().doubleValue() == 0) contextEmbedding = nameEmbedding;
return Nd4j.hstack(nameEmbedding, contextEmbedding);
} else {
throw new IllegalArgumentException("invalid strategy");
}
}
public INDArray encodeID(String id, String fallback) {
try {
return normalize(parvec.getWordVectorMatrix(id));
} catch(Exception e) { // no matching label in model
return null;//Nd4j.zeros(parvec.getLayerSize());
// TODO: deactivated because results were bad [EVALUATE]
//return encode(fallback);
}
}
public INDArray encodeMention(String mention, String context) {
INDArray nameEmbedding = encode(mention);
if(strategy.equals(Strategy.NAME)) {
return nameEmbedding;
} else if(strategy.equals(Strategy.NAME_CONTEXT)) {
INDArray contextEmbedding = encode(context);
return Nd4j.hstack(nameEmbedding, contextEmbedding);
} else {
throw new IllegalArgumentException("invalid strategy");
}
}
@Override
public INDArray encode(Span span) {
return encode(span.getText());
}
@Override
public INDArray encode(String word) {
try {
return normalize(parvec.inferVector(word));
} catch(Exception e) { // no matching words in model
return Nd4j.zeros(parvec.getLayerSize());
}
}
/**
* Encodes each annotation in the document and attaches the vector to it.
*/
public void encodeEach(Document doc, Annotation.Source source, Class extends Annotation> type) {
doc.streamAnnotations(source, type).forEach(ann -> {
String entityMention = ann.getText();
String entityContext = doc.getSentenceAtPosition(ann.getBegin()).get().toTokenizedString();
INDArray vec = encodeMention(entityMention, entityContext);
ann.putVector(EntityEncoder.class, vec);
});
}
private INDArray normalize(INDArray vec) {
return vec != null ? Transforms.unitVec(vec) : null;
}
@Override
public void trainModel(Collection documents) {
throw new UnsupportedOperationException("Not implemented yet.");
}
@Override
public void saveModel(Resource dir, String name) {
throw new UnsupportedOperationException("Not implemented yet.");
}
}