Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
de.datexis.ner.eval.MentionAnnotatorEvaluation Maven / Gradle / Ivy
package de.datexis.ner.eval;
import com.google.common.collect.Lists;
import de.datexis.annotator.AnnotatorEvaluation;
import de.datexis.model.Annotation;
import de.datexis.model.Dataset;
import static de.datexis.annotator.AnnotatorEvaluation.Measure.*;
import de.datexis.model.Document;
import de.datexis.model.Token;
import de.datexis.model.tag.BIO2Tag;
import de.datexis.ner.MentionAnnotation;
import java.util.Collection;
import java.util.List;
import java.util.TreeMap;
import java.util.stream.Collectors;
import org.nd4j.linalg.primitives.Counter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Evaluates Precision/Recall/F1 for Annotation Matching.
* @author Sebastian Arnold
*/
public class MentionAnnotatorEvaluation extends AnnotatorEvaluation {
protected static Logger log = LoggerFactory.getLogger(MentionAnnotatorEvaluation.class);
protected TreeMap> counts;
Annotation.Match matchingStrategy;
public MentionAnnotatorEvaluation(String experimentName, Annotation.Match matchingStrategy) {
this(experimentName, Annotation.Source.GOLD, Annotation.Source.PRED, matchingStrategy);
}
public MentionAnnotatorEvaluation(String experimentName, Annotation.Source expected, Annotation.Source predicted, Annotation.Match matchingStrategy) {
super(experimentName, expected, predicted);
log = LoggerFactory.getLogger(MentionAnnotatorEvaluation.class);
this.matchingStrategy = matchingStrategy;
clear();
}
protected void clear() {
counts = new TreeMap<>();
counts.put(TP, new Counter<>());
counts.put(FP, new Counter<>());
counts.put(TN, new Counter<>());
counts.put(FN, new Counter<>());
countExamples = 0;
countAnnotations = 0;
countDocs = 0;
countSentences = 0;
countTokens = 0;
}
protected double getCount(Measure m, int classIdx) {
return (double) counts.get(m).getCount(classIdx);
}
@Override
public double getScore() {
return getMicroF1();
}
@Override
public void calculateScores(Dataset dataset) {
calculateScoresFromAnnotations(dataset.getDocuments(), MentionAnnotation.class);
}
@Override
public void calculateScores(Collection docs) {
calculateScoresFromAnnotations(docs, MentionAnnotation.class);
}
public void calculateScoresFromAnnotations(Collection docs, Class extends Annotation> annotationClass) {
int i = 0;
for(Document d : docs) {
counts.get(TP).setCount(i, getTP(d, annotationClass));
counts.get(FP).setCount(i, getFP(d, annotationClass));
counts.get(TN).setCount(i, getTN(d, annotationClass));
counts.get(FN).setCount(i, getFN(d, annotationClass));
countTokens += d.countTokens();
countSentences += d.countSentences();
countAnnotations += d.countAnnotations(expectedSource, annotationClass);
countDocs++;
i++;
}
fixCounters();
}
/**
* required to update totalCount() - fixed in next Nd4j https://github.com/deeplearning4j/nd4j/commit/2698b2e23d8ccf6cf71c3bf6fc325e9638877ae8
*/
protected void fixCounters() {
counts.get(TP).removeKey(-1);
counts.get(FP).removeKey(-1);
counts.get(TN).removeKey(-1);
counts.get(FN).removeKey(-1);
}
public double getTP(Document d, Class extends Annotation> annotationClass) {
int result = 0;
List extends Annotation> predicted = Lists.newArrayList(d.streamAnnotations(predictedSource, annotationClass).iterator());
List extends Annotation> expected = Lists.newArrayList(d.streamAnnotations(expectedSource, annotationClass).iterator());
for(Annotation pred : predicted) {
// was: if(expected.contains(pred)) result++;
// TODO: optimize inner loops or use streams with match equality function
for(Annotation exp : expected) {
if(pred.matches(exp, matchingStrategy)) {
result++;
break; // allow only one match
}
}
}
countExamples += result;
return result;
}
public double getFP(Document d, Class extends Annotation> annotationClass) {
int result = 0;
List extends Annotation> predicted = Lists.newArrayList(d.streamAnnotations(predictedSource, annotationClass).iterator());
List extends Annotation> expected = Lists.newArrayList(d.streamAnnotations(expectedSource, annotationClass).iterator());
for(Annotation pred : predicted) {
// was: if(!expected.contains(pred)) result++;
boolean found = false;
for(Annotation exp : expected) {
if(exp.matches(pred, matchingStrategy)) {
found = true;
break;
}
}
if(!found) result++;
}
countExamples += result;
return result;
}
public double getTN(Document d, Class extends Annotation> annotationClass) {
// no annotation is explicitly NOT in test
return 0;
}
public double getFN(Document d, Class extends Annotation> annotationClass) {
int result = 0;
List extends Annotation> predicted = Lists.newArrayList(d.streamAnnotations(predictedSource, annotationClass).iterator());
List extends Annotation> expected = Lists.newArrayList(d.streamAnnotations(expectedSource, annotationClass).iterator());
for(Annotation exp : expected) {
// was: if(!predicted.contains(exp)) result++;
boolean found = false;
for(Annotation pred : predicted) {
if(pred.matches(exp, Annotation.Match.STRONG)) {
found = true;
break;
}
}
if(!found) result++;
}
return result;
}
public double getTP() {
return counts.get(TP).totalCount();
}
public double getFP() {
return counts.get(FP).totalCount();
}
public double getTN() {
return counts.get(TN).totalCount();
}
public double getFN() {
return counts.get(FN).totalCount();
}
/** safe division, where n/0 = 0 */
protected double div(double n, double d) {
if(d == 0.0) return 0.0;
else return n / d;
}
/**
* This is CoNLL2003 Accuracy
* @param data
* @return accuracy = correctTags / tokenCounter
*/
public double getTokenAccuracy(Dataset data) {
double count = 0, correct = 0;
for(Token t: data.streamTokens().collect(Collectors.toList())) {
if(t.getTag(expectedSource, BIO2Tag.class).get().equals(t.getTag(predictedSource, BIO2Tag.class).get())) correct++;
count++;
}
return correct / count;
}
/**
* Micro/Macro Accuracy
*/
public double getAccuracy() {
double found = getTP();
double correct = getTP() + getFN();
if(correct > 0) return found / correct;
else return 0;
}
/**
* Accuracy per class
* @param c - class index
*/
protected double getAccuracy(int c) {
return div(getCount(TP,c) , getCount(TP,c) + getCount(FN,c));
}
/**
* Micro Precision (average precision over all examples).
* This is the CoNLL2003 Precision.
* @return precision = correctChunk / foundGuessed
*/
public double getMicroPrecision() {
double correct = getTP();
double foundGuessed = getTP() + getFP();
if(foundGuessed > 0) return correct / foundGuessed;
else return 0;
}
/**
* Macro Precision (average Precision over all classes).
*/
public double getMacroPrecision() {
double score = 0;
int count = 0;
for(int i = 0; i 0) {
score += getPrecision(i);
count++;
}
}
if(count > 0) return score / count;
else return 0;
}
/**
* Precision per class
* @param c - class index
*/
protected double getPrecision(int c) {
if(getCount(TP,c) == 0) return 0;
return div(getCount(TP,c) , getCount(TP,c) + getCount(FP,c));
}
/**
* Micro Recall (average recall over all examples).
* This is the CoNLL2003 Recall.
* @return recall = correctChunk / foundCorrect
*/
public double getMicroRecall() {
double correct = getTP();
double foundCorrect = getTP() + getFN();
if(foundCorrect > 0) return correct / foundCorrect;
else return 0;
}
/**
* Macro Recall (average recall over all classes).
*/
public double getMacroRecall() {
double score = 0;
int count = 0;
for(int i = 0; i 0) {
score += getRecall(i);
count++;
}
}
if(count > 0) return score / count;
else return 0;
}
/**
* Recall per class
* @param c - class index
*/
protected double getRecall(int c) {
if(getCount(TP,c) == 0) return 0;
return div(getCount(TP,c) , getCount(TP,c) + getCount(FN,c));
}
/**
* Micro F1 score (average F1 over all examples).
* This is CoNLL2003 NER-style F1
* @return $FB1 = 2*$precision*$recall/($precision+$recall) if ($precision+$recall > 0)
*/
public double getMicroF1() {
return getF1(getMicroPrecision(), getMicroRecall());
}
/**
* Macro F1 score (average F1 over all classes).
*/
public double getMacroF1() {
return getF1(getMacroPrecision(), getMacroRecall());
}
/**
* F1 score per document
* @param i - document index
*/
protected double getF1(int i) {
return getF1(getPrecision(i), getRecall(i));
}
/**
* F1 score from prec and recall
*/
private double getF1(double precision, double recall) {
if(precision + recall == 0) return 0;
return (2. * precision * recall) / (precision + recall);
}
public String printAnnotationStats() {
return printHeader() + printRow();
}
public static String printHeader() {
StringBuilder line = new StringBuilder();
line.append("ANNOTATION [micro-avg]\n")
.append("Experiment ----------------------------------------\t#Docs\t#Tokns\t#Anns\t#Pred\t#TP\t#FP\t#TN\t#FN\tPrec\tRec\tF1");
line.append("\n");
System.out.print(line.toString());
return line.toString();
}
public String printRow() {
StringBuilder line = new StringBuilder();
line.append(fStr(experimentName, 50)).append("\t");
line.append(fInt(countDocuments())).append("\t");
line.append(fInt(countTokens())).append("\t");
line.append(fInt(countAnnotations())).append("\t");
line.append(fInt(countExamples())).append("\t");
line.append(fInt(getTP())).append("\t");
line.append(fInt(getFP())).append("\t");
line.append(fInt(getTN())).append("\t");
line.append(fInt(getFN())).append("\t");
line.append(fDbl(getMicroPrecision())).append("\t");
line.append(fDbl(getMicroRecall())).append("\t");
line.append(fDbl(getMicroF1())).append("\t");
line.append("\n");
System.out.print(line.toString());
return line.toString();
}
}