All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
de.datexis.ner.exec.TrainMentionAnnotatorSeedList Maven / Gradle / Ivy
package de.datexis.ner.exec;
import de.datexis.common.CommandLineParser;
import de.datexis.common.Resource;
import de.datexis.common.WordHelpers;
import de.datexis.encoder.impl.PositionEncoder;
import de.datexis.encoder.impl.SurfaceEncoder;
import de.datexis.encoder.impl.TrigramEncoder;
import de.datexis.model.Annotation;
import de.datexis.model.Dataset;
import de.datexis.ner.MatchingAnnotator;
import de.datexis.ner.MentionAnnotator;
import de.datexis.reader.RawTextDatasetReader;
import java.io.IOException;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.HelpFormatter;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.ParseException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Main Controller for training of MentionAnnotator / NER models.
* @author Sebastian Arnold
*/
public class TrainMentionAnnotatorSeedList {
protected final static Logger log = LoggerFactory.getLogger(TrainMentionAnnotatorSeedList.class);
public static void main(String[] args) throws IOException {
final ExecParams params = new ExecParams();
final CommandLineParser parser = new CommandLineParser(params);
try {
parser.parse(args);
new TrainMentionAnnotatorSeedList().runTraining(params);
System.exit(0);
} catch(ParseException e) {
HelpFormatter formatter = new HelpFormatter();
formatter.printHelp("texoo-train-ner-seed", "TeXoo: train MentionAnnotator with seed list", params.setUpCliOptions(), "", true);
System.exit(1);
}
}
protected static class ExecParams implements CommandLineParser.Options {
protected String inputFiles;
protected String seedList;
protected String language;
protected String outputPath = null;
protected boolean trainingUI = false;
@Override
public void setParams(CommandLine parse) {
inputFiles = parse.getOptionValue("i");
seedList = parse.getOptionValue("s");
outputPath = parse.getOptionValue("o");
trainingUI = parse.hasOption("u");
language = parse.getOptionValue("l", "en");
}
@Override
public Options setUpCliOptions() {
Options op = new Options();
op.addRequiredOption("i", "input", true, "path or file name for raw input text");
op.addRequiredOption("s", "seed", true, "path to seed list text file");
op.addRequiredOption("o", "output", true, "path to create and store the model");
op.addOption("l", "language", true, "language to use for sentence splitting and stopwords (EN or DE)");
op.addOption("u", "ui", false, "enable training UI (http://127.0.0.1:9000)");
return op;
}
}
protected void runTraining(ExecParams params) throws IOException {
// Configure parameters
Resource inputPath = Resource.fromDirectory(params.inputFiles);
//Resource validationPath = Resource.fromDirectory(params.validationPath);
//Resource testPath = Resource.fromDirectory(params.testPath);
Resource outputPath = Resource.fromDirectory(params.outputPath);
Resource seedPath = Resource.fromDirectory(params.seedList);
WordHelpers.Language lang = WordHelpers.getLanguage(params.language);
// Read datasets
Dataset train =new RawTextDatasetReader().read(inputPath);
//Dataset validation = CoNLLDatasetReader.readDataset(validationPath, validationPath.getFileName(), CoNLLDatasetReader.Charset.UTF_8);
//Dataset test = CoNLLDatasetReader.readDataset(testPath, testPath.getFileName(), CoNLLDatasetReader.Charset.UTF_8);
// Configure matcher
MatchingAnnotator match = new MatchingAnnotator(MatchingAnnotator.MatchingStrategy.LOWERCASE);
match.loadTermsToMatch(seedPath);
// Configure model
MentionAnnotator ner = new MentionAnnotator.Builder()
.withEncoders("tri", new PositionEncoder(), new SurfaceEncoder(), new TrigramEncoder())
.enableTrainingUI(params.trainingUI)
.withTrainingParams(0.0001, 16, 1)
.withModelParams(512, 256)
.withWorkspaceParams(1) // single worker
.pretrain(train)
.build();
// Train model
ner.trainModel(train, Annotation.Source.SILVER, lang, 5000, false, true);
// Save model
System.out.println("saving model to path: " + outputPath);
ner.writeModel(outputPath);
}
}