Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package de.gsi.chart.renderer.datareduction;
import java.security.InvalidParameterException;
import de.gsi.chart.renderer.RendererDataReducer;
import de.gsi.dataset.utils.AssertUtils;
import de.gsi.dataset.utils.ProcessingProfiler;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
/**
* Default data reduction algorithm implementation for the ErrorDataSet Renderer
*
* Simple algorithm that reduces the number of points if neighbouring x
* coordinates are closer than the user-defined dash size. Points in between are
* dropped and their errors propagated to the following drawn data point. N.B.
* numerical complexity: average = worst-case = O(n)
*
* @author rstein
*/
public class DefaultDataReducer implements RendererDataReducer {
protected IntegerProperty minPointPixelDistance = new SimpleIntegerProperty(this, "minPixelDistance", 6) {
@Override
public void set(final int value) {
if (value < 0) {
throw new InvalidParameterException("minPointPixelDistance " + value + " must be greater than zero");
}
super.set(value);
}
};
/**
* @return the minPointPixelDistance.
*/
public final int getMinPointPixelDistance() {
return minPointPixelDistanceProperty().get();
}
/**
* Sets the minPointPixelDistance to the specified value.
*
* @param minPixelDistance the minimum distance between two adjacent points.
*/
public final void setMinPointPixelDistance(final int minPixelDistance) {
minPointPixelDistanceProperty().setValue(minPixelDistance);
}
public final IntegerProperty minPointPixelDistanceProperty() {
return minPointPixelDistance;
}
/**
* Internal function to the ErrorDataSetRenderer arrays are cached copies and
* operations are assumed to be performed in-place (<-> for performance
* reasons/minimisation of memory allocation)
*
* @param xValues array of x coordinates
* @param yValues array of y coordinates
* @param xPointErrorsPos array of coordinates containing x+exp
* @param xPointErrorsNeg array of coordinates containing x-exn
* @param yPointErrorsPos array of coordinates containing x+eyp
* @param yPointErrorsNeg array of coordinates containing x+eyn
* @param pointSelected array containing the points that have been specially
* selected by the user
* @param indexMin minimum index of those array that shall be considered
* @param indexMax maximum index of those array that shall be considered
* @return effective number of points that remain after the reduction
*/
@Override
public int reducePoints(final double[] xValues, final double[] yValues, final double[] xPointErrorsPos,
final double[] xPointErrorsNeg, final double[] yPointErrorsPos, final double[] yPointErrorsNeg,
final String[] styles, final boolean[] pointSelected, final int indexMin, final int indexMax) {
AssertUtils.nonEmptyArray("xValues", xValues);
final int defaultDataLength = xValues.length;
AssertUtils.checkArrayDimension("yValues", yValues, defaultDataLength);
AssertUtils.checkArrayDimension("pointSelected", pointSelected, defaultDataLength);
AssertUtils.gtEqThanZero("indexMax", indexMin);
AssertUtils.gtThanZero("indexMax", indexMax);
final boolean xErrorPos = xPointErrorsPos != null;
final boolean xErrorNeg = xPointErrorsNeg != null;
final boolean yErrorPos = yPointErrorsPos != null;
final boolean yErrorNeg = yPointErrorsNeg != null;
if (xErrorPos && xErrorNeg && yErrorPos && yErrorNeg) {
AssertUtils.checkArrayDimension("xPointErrorsPos", xPointErrorsPos, defaultDataLength);
AssertUtils.checkArrayDimension("xPointErrorsNeg", xPointErrorsNeg, defaultDataLength);
AssertUtils.checkArrayDimension("yPointErrorsPos", yPointErrorsPos, defaultDataLength);
AssertUtils.checkArrayDimension("yPointErrorsNeg", yPointErrorsNeg, defaultDataLength);
return reducePointsInternal(xValues, yValues, xPointErrorsPos, xPointErrorsNeg, yPointErrorsPos,
yPointErrorsNeg, styles, pointSelected, indexMin, indexMax);
} else if (yErrorPos && yErrorNeg) {
AssertUtils.checkArrayDimension("yPointErrorsPos", yPointErrorsPos, defaultDataLength);
AssertUtils.checkArrayDimension("yPointErrorsNeg", yPointErrorsNeg, defaultDataLength);
return reducePointsInternal(xValues, yValues, yPointErrorsPos, yPointErrorsNeg, styles, pointSelected,
indexMin, indexMax);
} else {
return reducePointsInternal(xValues, yValues, styles, pointSelected, indexMin, indexMax);
}
}
private int reducePointsInternal(final double[] xValues, final double[] yValues, final double[] xPointErrorsPos,
final double[] xPointErrorsNeg, final double[] yPointErrorsPos, final double[] yPointErrorsNeg,
final String[] styles, final boolean[] pointSelected, final int indexMin, final int indexMax) {
final long start = ProcessingProfiler.getTimeStamp();
int count = 0;
int ncount = 0;
double meanX = 0;
double meanY = 0;
int minY = +Integer.MAX_VALUE;
int maxY = -Integer.MAX_VALUE;
int minX = +Integer.MAX_VALUE;
int maxX = -Integer.MAX_VALUE;
String style = null;
boolean sel = false;
double xold = xValues[indexMin];
double yold = yValues[indexMin];
final int minPixelDistance = getMinPointPixelDistance();
// add first point - by default (was earlier as a conditional statement
// in for loop which reduced performance, ie. this code is a hot-spot)
xValues[count] = xValues[indexMin];
yValues[count] = yValues[indexMin];
xPointErrorsNeg[count] = xPointErrorsNeg[indexMin];
xPointErrorsPos[count] = xPointErrorsPos[indexMin];
yPointErrorsNeg[count] = yPointErrorsNeg[indexMin];
yPointErrorsPos[count] = yPointErrorsPos[indexMin];
pointSelected[count] = pointSelected[indexMin];
styles[count] = styles[indexMin];
count++;
// have added first point regardless of reduction criteria
// 'count == 1' and 'ncount == 0'
// for loop for points between ]first point, last point[
// (N.B. we required via ErrorDataSet that indexMax-indexMin is always >3)
for (int i = indexMin + 1; i < indexMax - 1; i++) {
final double newXValue = xValues[i];
final double newYValue = yValues[i];
final int differenceInX = (int) Math.abs(xold - newXValue);
final int differenceInY = (int) Math.abs(yold - newYValue);
// check hor. and ver. pixel distance of new to last drawn point
if (differenceInX > minPixelDistance || differenceInY > minPixelDistance) {
// pixel distance larger than required min-distance -> have to draw new point
if (ncount > 0) {
// absorbed at least one point before
// compute mean -- first part: accumulation, min, max
if (ncount == 1) {
xValues[count] = (int) (meanX);
yValues[count] = (int) (meanY);
} else {
xValues[count] = (int) (meanX / ncount);
yValues[count] = (int) (meanY / ncount);
}
xPointErrorsNeg[count] = minX;
xPointErrorsPos[count] = maxX;
yPointErrorsNeg[count] = maxY;
yPointErrorsPos[count] = minY;
pointSelected[count] = sel;
styles[count] = style;
count++;
// aggregated/merged previous points - accumulation phase is finished
}
// add new point outside the accumulated region
// start new accumulation phase
meanX = newXValue;
meanY = newYValue;
xold = newXValue;
yold = newYValue;
minX = (int) xPointErrorsPos[i];
maxX = (int) xPointErrorsNeg[i];
minY = (int) yPointErrorsPos[i];
maxY = (int) yPointErrorsNeg[i];
sel |= pointSelected[i];
style = styles[i];
ncount = 1;
} else {
// points are closer than the dash size, drop new point
// compute mean -- first part: accumulation, min, max
meanX += newXValue;
meanY += newYValue;
minY = Math.min(minY, (int) yPointErrorsPos[i]);
maxY = Math.max(maxY, (int) yPointErrorsNeg[i]);
minX = Math.min(minX, (int) xPointErrorsPos[i]);
maxX = Math.max(maxX, (int) xPointErrorsNeg[i]);
sel |= pointSelected[i];
ncount++;
}
}
// add last point - by default (was earlier as a conditional statement
// in for loop which reduced performance, ie. this code is a hot-spot)
xValues[count] = xValues[indexMax - 1];
yValues[count] = yValues[indexMax - 1];
xPointErrorsNeg[count] = xPointErrorsPos[indexMax - 1];
xPointErrorsPos[count] = xPointErrorsNeg[indexMax - 1];
yPointErrorsNeg[count] = yPointErrorsPos[indexMax - 1];
yPointErrorsPos[count] = yPointErrorsNeg[indexMax - 1];
pointSelected[count] = pointSelected[indexMax - 1];
styles[count] = styles[indexMax - 1];
count++;
ProcessingProfiler.getTimeDiff(start,
String.format("data reduction (full-xy error definitions: from %d to %d)", indexMax - indexMin, count));
return count;
}
private int reducePointsInternal(final double[] xValues, final double[] yValues, final double[] yPointErrorsPos,
final double[] yPointErrorsNeg, final String[] styles, final boolean[] pointSelected, final int indexMin,
final int indexMax) {
final long start = ProcessingProfiler.getTimeStamp();
int count = 0;
int ncount = 0;
double meanX = 0;
double meanY = 0;
int minY = +Integer.MAX_VALUE;
int maxY = -Integer.MAX_VALUE;
String style = null;
boolean sel = false;
double xold = xValues[indexMin];
double yold = yValues[indexMin];
final int minPixelDistance = getMinPointPixelDistance();
// add first point - by default (was earlier as a conditional statement
// in for loop which reduced performance, ie. this code is a hot-spot)
xValues[count] = xValues[indexMin];
yValues[count] = yValues[indexMin];
yPointErrorsNeg[count] = yPointErrorsNeg[indexMin];
yPointErrorsPos[count] = yPointErrorsPos[indexMin];
pointSelected[count] = pointSelected[indexMin];
styles[count] = styles[indexMin];
count++;
// have added first point regardless of reduction criteria
// 'count == 1' and 'ncount == 0'
// for loop for points between ]first point, last point[
// (N.B. we required via ErrorDataSet that indexMax-indexMin is always >3)
for (int i = indexMin + 1; i < indexMax - 1; i++) {
final double newXValue = xValues[i];
final double newYValue = yValues[i];
final int differenceInX = (int) Math.abs(xold - newXValue);
final int differenceInY = (int) Math.abs(yold - newYValue);
// check hor. and ver. pixel distance of new to last drawn point
if (differenceInX > minPixelDistance || differenceInY > minPixelDistance) {
// pixel distance larger than required min-distance -> have to draw new point
if (ncount > 0) {
// absorbed at least one point before
// compute mean -- first part: accumulation, min, max
if (ncount == 1) {
xValues[count] = (int) (meanX);
yValues[count] = (int) (meanY);
} else {
xValues[count] = (int) (meanX / ncount);
yValues[count] = (int) (meanY / ncount);
}
yPointErrorsNeg[count] = maxY;
yPointErrorsPos[count] = minY;
pointSelected[count] = sel;
styles[count] = style;
count++;
// aggregated/merged previous points - accumulation phase is finished
}
// add new point outside the accumulated region
// start new accumulation phase
meanX = newXValue;
meanY = newYValue;
xold = newXValue;
yold = newYValue;
minY = (int) yPointErrorsPos[i];
maxY = (int) yPointErrorsNeg[i];
sel |= pointSelected[i];
style = styles[i];
ncount = 1;
} else {
// points are closer than the dash size, drop new point
// compute mean -- first part: accumulation, min, max
meanX += newXValue;
meanY += newYValue;
minY = Math.min(minY, (int) yPointErrorsPos[i]);
maxY = Math.max(maxY, (int) yPointErrorsNeg[i]);
sel |= pointSelected[i];
ncount++;
}
}
// add last point - by default (was earlier as a conditional statement
// in for loop which reduced performance, ie. this code is a hot-spot)
xValues[count] = xValues[indexMax - 1];
yValues[count] = yValues[indexMax - 1];
yPointErrorsNeg[count] = yPointErrorsPos[indexMax - 1];
yPointErrorsPos[count] = yPointErrorsNeg[indexMax - 1];
pointSelected[count] = pointSelected[indexMax - 1];
styles[count] = styles[indexMax - 1];
count++;
ProcessingProfiler.getTimeDiff(start,
String.format("only-y error definitions: data reduction (from %d to %d)", indexMax - indexMin, count));
return count;
}
private int reducePointsInternal(final double[] xValues, final double[] yValues, final String[] styles,
final boolean[] pointSelected, final int indexMin, final int indexMax) {
final long start = ProcessingProfiler.getTimeStamp();
int count = 0;
int ncount = 0;
double meanX = 0;
double meanY = 0;
String style = null;
boolean sel = false;
double xold = xValues[indexMin];
double yold = yValues[indexMin];
final int minPixelDistance = getMinPointPixelDistance();
// add first point - by default (was earlier as a conditional statement
// in for loop which reduced performance, ie. this code is a hot-spot)
xValues[count] = xValues[indexMin];
yValues[count] = yValues[indexMin];
pointSelected[count] = pointSelected[indexMin];
styles[count] = styles[indexMin];
count++;
// have added first point regardless of reduction criteria
// 'count == 1' and 'ncount == 0'
// for loop for points between ]first point, last point[
// (N.B. we required via ErrorDataSet that indexMax-indexMin is always >3)
for (int i = indexMin + 1; i < indexMax - 1; i++) {
final double newXValue = xValues[i];
final double newYValue = yValues[i];
final int differenceInX = (int) Math.abs(xold - newXValue);
final int differenceInY = (int) Math.abs(yold - newYValue);
// check hor. and ver. pixel distance of new to last drawn point
if (differenceInX > minPixelDistance || differenceInY > minPixelDistance) {
// pixel distance larger than required min-distance -> have to draw new point
if (ncount > 0) {
// absorbed at least one point before
// compute mean -- first part: accumulation, min, max
if (ncount == 1) {
xValues[count] = (int) (meanX);
yValues[count] = (int) (meanY);
} else {
xValues[count] = (int) (meanX / ncount);
yValues[count] = (int) (meanY / ncount);
}
pointSelected[count] = sel;
styles[count] = style;
count++;
// aggregated/merged previous points - accumulation phase is finished
}
// add new point outside the accumulated region
// start new accumulation phase
meanX = newXValue;
meanY = newYValue;
xold = newXValue;
yold = newYValue;
sel |= pointSelected[i];
style = styles[i];
ncount = 1;
} else {
// points are closer than the dash size, drop new point
// compute mean -- first part: accumulation, min, max
meanX += newXValue;
meanY += newYValue;
sel |= pointSelected[i];
ncount++;
}
}
// add last point - by default (was earlier as a conditional statement
// in for loop which reduced performance, ie. this code is a hot-spot)
xValues[count] = xValues[indexMax - 1];
yValues[count] = yValues[indexMax - 1];
pointSelected[count] = pointSelected[indexMax - 1];
styles[count] = styles[indexMax - 1];
count++;
ProcessingProfiler.getTimeDiff(start,
String.format("data reduction (no error definitions: from %d to %d)", indexMax - indexMin, count));
return count;
}
}