
de.learnlib.algorithms.adt.config.model.replacer.SingleReplacer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learnlib-adt Show documentation
Show all versions of learnlib-adt Show documentation
This artifact provides the implementation of the ADT learning algorithm as described in the Master thesis
"Active Automata Learning with Adaptive Distinguishing Sequences" (http://arxiv.org/abs/1902.01139) by Markus
Frohme.
/* Copyright (C) 2013-2018 TU Dortmund
* This file is part of LearnLib, http://www.learnlib.de/.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package de.learnlib.algorithms.adt.config.model.replacer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Set;
import java.util.function.Function;
import java.util.stream.Collectors;
import javax.annotation.Nullable;
import javax.annotation.ParametersAreNonnullByDefault;
import de.learnlib.algorithms.adt.adt.ADT;
import de.learnlib.algorithms.adt.adt.ADTNode;
import de.learnlib.algorithms.adt.api.SubtreeReplacer;
import de.learnlib.algorithms.adt.config.model.ADSCalculator;
import de.learnlib.algorithms.adt.model.ReplacementResult;
import de.learnlib.algorithms.adt.util.ADTUtil;
import net.automatalib.automata.transout.MealyMachine;
import net.automatalib.words.Alphabet;
import net.automatalib.words.Word;
/**
* @author frohme
*/
@ParametersAreNonnullByDefault
public class SingleReplacer implements SubtreeReplacer {
private final ADSCalculator adsCalculator;
public SingleReplacer(final ADSCalculator adsProvider) {
this.adsCalculator = adsProvider;
}
@Override
public Set> computeReplacements(final MealyMachine hypothesis,
final Alphabet inputs,
final ADT adt) {
final Set> candidates = ADTUtil.collectADSNodes(adt.getRoot());
candidates.remove(adt.getRoot());
final Map, Double> candidatesScore =
candidates.stream().collect(Collectors.toMap(Function.identity(), node -> {
final int resets = 1 + ADTUtil.collectResetNodes(node).size();
final int finals = ADTUtil.collectLeaves(node).size();
return resets / (double) finals;
}));
final List> sortedCandidates = new ArrayList<>(candidates);
Collections.sort(sortedCandidates, Comparator.comparingDouble(candidatesScore::get));
for (final ADTNode node : sortedCandidates) {
final Set targetStates =
ADTUtil.collectLeaves(node).stream().map(ADTNode::getHypothesisState).collect(Collectors.toSet());
// check if we can extendLeaf the parent ADS
final ReplacementResult replacementResult =
computeParentExtension(hypothesis, inputs, node, targetStates, adsCalculator);
if (replacementResult != null) {
return Collections.singleton(replacementResult);
}
// if we cannot save any resets, don't bother with replacement
if (ADTUtil.collectResetNodes(node).isEmpty()) {
continue;
}
final Optional> potentialADS = adsCalculator.compute(hypothesis, inputs, targetStates);
if (potentialADS.isPresent()) {
return Collections.singleton(new ReplacementResult<>(node, potentialADS.get()));
}
}
return Collections.emptySet();
}
/**
* Try to compute a replacement for a ADT sub-tree that extends the parent ADS.
*
* @param hypothesis
* the hypothesis for determining the system behavior
* @param inputs
* the input symbols to consider
* @param node
* the root node of the sub-ADT
* @param targetStates
* the set of hypothesis states covered by the given ADT node
* @param adsCalculator
* the ADS calculator instance
* @param
* state type
* @param
* input symbol type
* @param
* output symbol type
*
* @return a ReplacementResult for the parent (reset) node, if a valid replacement is found. {@code null} otherwise.
*/
@Nullable
static ReplacementResult computeParentExtension(final MealyMachine hypothesis,
final Alphabet inputs,
final ADTNode node,
final Set targetStates,
final ADSCalculator adsCalculator) {
final ADTNode parentReset = node.getParent();
assert ADTUtil.isResetNode(parentReset) : "should not happen";
final Word incomingTraceInput = ADTUtil.buildTraceForNode(parentReset).getFirst();
Map currentToInitialMapping =
targetStates.stream().collect(Collectors.toMap(Function.identity(), Function.identity()));
for (final I i : incomingTraceInput) {
final Map nextMapping = new HashMap<>();
for (final Map.Entry entry : currentToInitialMapping.entrySet()) {
final S successor = hypothesis.getSuccessor(entry.getKey(), i);
// converging states
if (nextMapping.containsKey(successor)) {
return null;
}
nextMapping.put(successor, entry.getValue());
}
currentToInitialMapping = nextMapping;
}
final Optional> potentialExtension =
adsCalculator.compute(hypothesis, inputs, currentToInitialMapping.keySet());
if (potentialExtension.isPresent()) {
final ADTNode extension = potentialExtension.get();
for (final ADTNode finalNode : ADTUtil.collectLeaves(extension)) {
finalNode.setHypothesisState(currentToInitialMapping.get(finalNode.getHypothesisState()));
}
return new ReplacementResult<>(parentReset, potentialExtension.get());
}
return null;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy