All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.stanford.nlp.parser.nndep.Classifier Maven / Gradle / Ivy

Go to download

Stanford Parser processes raw text in English, Chinese, German, Arabic, and French, and extracts constituency parse trees.

There is a newer version: 3.9.2
Show newest version
package edu.stanford.nlp.parser.nndep;

import edu.stanford.nlp.util.CollectionUtils;
import edu.stanford.nlp.util.Pair;
import edu.stanford.nlp.util.concurrent.MulticoreWrapper;
import edu.stanford.nlp.util.concurrent.ThreadsafeProcessor;

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ThreadLocalRandom;
import java.util.stream.IntStream;

/**
 * Neural network classifier which powers a transition-based dependency
 * parser.
 *
 * This classifier is built to accept distributed-representation
 * inputs, and feeds back errors to these input layers as it learns.
 *
 * In order to train a classifier, instantiate this class using the
 * {@link #Classifier(Config, Dataset, double[][], double[][], double[], double[][], java.util.List)}
 * constructor. (The presence of a non-null dataset signals that we
 * wish to train.) After training by alternating calls to
 * {@link #computeCostFunction(int, double, double)} and,
 * {@link #takeAdaGradientStep(edu.stanford.nlp.parser.nndep.Classifier.Cost, double, double)},
 * be sure to call {@link #finalizeTraining()} in order to allow the
 * classifier to clean up resources used during training.
 *
 * @author Danqi Chen
 * @author Jon Gauthier
 */
public class Classifier {
  // E: numFeatures x embeddingSize
  // W1: hiddenSize x (embeddingSize x numFeatures)
  // b1: hiddenSize
  // W2: numLabels x hiddenSize

  // Weight matrices
  private final double[][] W1, W2, E;
  private final double[] b1;

  // Global gradSaved
  private double[][] gradSaved;

  // Gradient histories
  private double[][] eg2W1, eg2W2, eg2E;
  private double[] eg2b1;

  /**
   * Pre-computed hidden layer unit activations. Each double array
   * within this data is an entire hidden layer. The sub-arrays are
   * indexed somewhat arbitrarily; in order to find hidden-layer unit
   * activations for a given feature ID, use {@link #preMap} to find
   * the proper index into this data.
   */
  private double[][] saved;

  /**
   * Describes features which should be precomputed. Each entry maps a
   * feature ID to its destined index in the saved hidden unit
   * activation data (see {@link #saved}).
   */
  private final Map preMap;

  /**
   * Initial training state is dependent on how the classifier is
   * initialized. We use this flag to determine whether calls to
   * {@link #computeCostFunction(int, double, double)}, etc. are valid.
   */
  private boolean isTraining;

  /**
   * All training examples.
   */
  private final Dataset dataset;

  /**
   * We use MulticoreWrapper to parallelize mini-batch training.
   * 

* Threaded job input: partition of minibatch; * current weights + params * Threaded job output: cost value, weight gradients for partition of * minibatch */ private final MulticoreWrapper, FeedforwardParams>, Cost> jobHandler; private final Config config; /** * Number of possible dependency relation labels among which this * classifier will choose. */ private final int numLabels; /** * Instantiate a classifier with previously learned parameters in * order to perform new inference. * * @param config * @param E * @param W1 * @param b1 * @param W2 * @param preComputed */ public Classifier(Config config, double[][] E, double[][] W1, double[] b1, double[][] W2, List preComputed) { this(config, null, E, W1, b1, W2, preComputed); } /** * Instantiate a classifier with training data and randomly * initialized parameter matrices in order to begin training. * * @param config * @param dataset * @param E * @param W1 * @param b1 * @param W2 * @param preComputed */ public Classifier(Config config, Dataset dataset, double[][] E, double[][] W1, double[] b1, double[][] W2, List preComputed) { this.config = config; this.dataset = dataset; this.E = E; this.W1 = W1; this.b1 = b1; this.W2 = W2; initGradientHistories(); numLabels = W2.length; preMap = new HashMap<>(); for (int i = 0; i < preComputed.size() && i < config.numPreComputed; ++i) preMap.put(preComputed.get(i), i); isTraining = dataset != null; if (isTraining) jobHandler = new MulticoreWrapper<>(config.trainingThreads, new CostFunction(), false); else jobHandler = null; } /** * Evaluates the training cost of a particular subset of training * examples given the current learned weights. * * This function will be evaluated in parallel on different data in * separate threads, and accesses the classifier's weights stored in * the outer class instance. * * Each nested class instance accumulates its own weight gradients; * these gradients will be merged on a main thread after all cost * function runs complete. * * @see #computeCostFunction(int, double, double) */ private class CostFunction implements ThreadsafeProcessor, FeedforwardParams>, Cost> { private double[][] gradW1; private double[] gradb1; private double[][] gradW2; private double[][] gradE; @Override public Cost process(Pair, FeedforwardParams> input) { Collection examples = input.first(); FeedforwardParams params = input.second(); // We can't fix the seed used with ThreadLocalRandom // TODO: Is this a serious problem? ThreadLocalRandom random = ThreadLocalRandom.current(); gradW1 = new double[W1.length][W1[0].length]; gradb1 = new double[b1.length]; gradW2 = new double[W2.length][W2[0].length]; gradE = new double[E.length][E[0].length]; double cost = 0.0; double correct = 0.0; for (Example ex : examples) { List feature = ex.getFeature(); List label = ex.getLabel(); double[] scores = new double[numLabels]; double[] hidden = new double[config.hiddenSize]; double[] hidden3 = new double[config.hiddenSize]; // Run dropout: randomly drop some hidden-layer units. `ls` // contains the indices of those units which are still active int[] ls = IntStream.range(0, config.hiddenSize) .filter(n -> random.nextDouble() > params.getDropOutProb()) .toArray(); int offset = 0; for (int j = 0; j < config.numTokens; ++j) { int tok = feature.get(j); int index = tok * config.numTokens + j; if (preMap.containsKey(index)) { // Unit activations for this input feature value have been // precomputed int id = preMap.get(index); // Only extract activations for those nodes which are still // activated (`ls`) for (int nodeIndex : ls) hidden[nodeIndex] += saved[id][nodeIndex]; } else { for (int nodeIndex : ls) { for (int k = 0; k < config.embeddingSize; ++k) hidden[nodeIndex] += W1[nodeIndex][offset + k] * E[tok][k]; } } offset += config.embeddingSize; } // Add bias term and apply activation function for (int nodeIndex : ls) { hidden[nodeIndex] += b1[nodeIndex]; hidden3[nodeIndex] = Math.pow(hidden[nodeIndex], 3); } // Feed forward to softmax layer (no activation yet) int optLabel = -1; for (int i = 0; i < numLabels; ++i) { if (label.get(i) >= 0) { for (int nodeIndex : ls) scores[i] += W2[i][nodeIndex] * hidden3[nodeIndex]; if (optLabel < 0 || scores[i] > scores[optLabel]) optLabel = i; } } double sum1 = 0.0; double sum2 = 0.0; double maxScore = scores[optLabel]; for (int i = 0; i < numLabels; ++i) { if (label.get(i) >= 0) { scores[i] = Math.exp(scores[i] - maxScore); if (label.get(i) == 1) sum1 += scores[i]; sum2 += scores[i]; } } cost += (Math.log(sum2) - Math.log(sum1)) / params.getBatchSize(); if (label.get(optLabel) == 1) correct += +1.0 / params.getBatchSize(); double[] gradHidden3 = new double[config.hiddenSize]; for (int i = 0; i < numLabels; ++i) if (label.get(i) >= 0) { double delta = -(label.get(i) - scores[i] / sum2) / params.getBatchSize(); for (int nodeIndex : ls) { gradW2[i][nodeIndex] += delta * hidden3[nodeIndex]; gradHidden3[nodeIndex] += delta * W2[i][nodeIndex]; } } double[] gradHidden = new double[config.hiddenSize]; for (int nodeIndex : ls) { gradHidden[nodeIndex] = gradHidden3[nodeIndex] * 3 * hidden[nodeIndex] * hidden[nodeIndex]; gradb1[nodeIndex] += gradHidden[nodeIndex]; } offset = 0; for (int j = 0; j < config.numTokens; ++j) { int tok = feature.get(j); int index = tok * config.numTokens + j; if (preMap.containsKey(index)) { int id = preMap.get(index); for (int nodeIndex : ls) gradSaved[id][nodeIndex] += gradHidden[nodeIndex]; } else { for (int nodeIndex : ls) { for (int k = 0; k < config.embeddingSize; ++k) { gradW1[nodeIndex][offset + k] += gradHidden[nodeIndex] * E[tok][k]; gradE[tok][k] += gradHidden[nodeIndex] * W1[nodeIndex][offset + k]; } } } offset += config.embeddingSize; } } return new Cost(cost, correct, gradW1, gradb1, gradW2, gradE); } /** * Return a new threadsafe instance. */ @Override public ThreadsafeProcessor, FeedforwardParams>, Cost> newInstance() { return new CostFunction(); } } /** * Describes the parameters for a particular invocation of a cost * function. */ private static class FeedforwardParams { /** * Size of the entire mini-batch (not just the chunk that might be * fed-forward at this moment). */ private final int batchSize; private final double dropOutProb; private FeedforwardParams(int batchSize, double dropOutProb) { this.batchSize = batchSize; this.dropOutProb = dropOutProb; } public int getBatchSize() { return batchSize; } public double getDropOutProb() { return dropOutProb; } } /** * Describes the result of feedforward + backpropagation through * the neural network for the batch provided to a `CostFunction.` *

* The members of this class represent weight deltas computed by * backpropagation. * * @see Classifier.CostFunction */ public class Cost { private double cost; // Percent of training examples predicted correctly private double percentCorrect; // Weight deltas private final double[][] gradW1; private final double[] gradb1; private final double[][] gradW2; private final double[][] gradE; private Cost(double cost, double percentCorrect, double[][] gradW1, double[] gradb1, double[][] gradW2, double[][] gradE) { this.cost = cost; this.percentCorrect = percentCorrect; this.gradW1 = gradW1; this.gradb1 = gradb1; this.gradW2 = gradW2; this.gradE = gradE; } /** * Merge the given {@code Cost} data with the data in this * instance. * * @param otherCost */ public void merge(Cost otherCost) { this.cost += otherCost.getCost(); this.percentCorrect += otherCost.getPercentCorrect(); addInPlace(gradW1, otherCost.getGradW1()); addInPlace(gradb1, otherCost.getGradb1()); addInPlace(gradW2, otherCost.getGradW2()); addInPlace(gradE, otherCost.getGradE()); } /** * Backpropagate gradient values from gradSaved into the gradients * for the E vectors that generated them. * * @param featuresSeen Feature IDs observed during training for * which gradSaved values need to be backprop'd * into gradE */ private void backpropSaved(Set featuresSeen) { for (int x : featuresSeen) { int mapX = preMap.get(x); int tok = x / config.numTokens; int offset = (x % config.numTokens) * config.embeddingSize; for (int j = 0; j < config.hiddenSize; ++j) { double delta = gradSaved[mapX][j]; for (int k = 0; k < config.embeddingSize; ++k) { gradW1[j][offset + k] += delta * E[tok][k]; gradE[tok][k] += delta * W1[j][offset + k]; } } } } /** * Add L2 regularization cost to the gradients associated with this * instance. */ private void addL2Regularization(double regularizationWeight) { for (int i = 0; i < W1.length; ++i) { for (int j = 0; j < W1[i].length; ++j) { cost += regularizationWeight * W1[i][j] * W1[i][j] / 2.0; gradW1[i][j] += regularizationWeight * W1[i][j]; } } for (int i = 0; i < b1.length; ++i) { cost += regularizationWeight * b1[i] * b1[i] / 2.0; gradb1[i] += regularizationWeight * b1[i]; } for (int i = 0; i < W2.length; ++i) { for (int j = 0; j < W2[i].length; ++j) { cost += regularizationWeight * W2[i][j] * W2[i][j] / 2.0; gradW2[i][j] += regularizationWeight * W2[i][j]; } } for (int i = 0; i < E.length; ++i) { for (int j = 0; j < E[i].length; ++j) { cost += regularizationWeight * E[i][j] * E[i][j] / 2.0; gradE[i][j] += regularizationWeight * E[i][j]; } } } public double getCost() { return cost; } public double getPercentCorrect() { return percentCorrect; } public double[][] getGradW1() { return gradW1; } public double[] getGradb1() { return gradb1; } public double[][] getGradW2() { return gradW2; } public double[][] getGradE() { return gradE; } } /** * Determine the feature IDs which need to be pre-computed for * training with these examples. */ private Set getToPreCompute(List examples) { Set featureIDs = new HashSet<>(); for (Example ex : examples) { List feature = ex.getFeature(); for (int j = 0; j < config.numTokens; j++) { int tok = feature.get(j); int index = tok * config.numTokens + j; if (preMap.containsKey(index)) featureIDs.add(index); } } double percentagePreComputed = featureIDs.size() / (float) config.numPreComputed; System.err.printf("Percent actually necessary to pre-compute: %f%%%n", percentagePreComputed * 100); return featureIDs; } /** * Determine the total cost on the dataset associated with this * classifier using the current learned parameters. This cost is * evaluated using mini-batch adaptive gradient descent. * * This method launches multiple threads, each of which evaluates * training cost on a partition of the mini-batch. * * @param batchSize * @param regParameter Regularization parameter (lambda) * @param dropOutProb Drop-out probability. Hidden-layer units in the * neural network will be randomly turned off * while training a particular example with this * probability. * @return A {@link edu.stanford.nlp.parser.nndep.Classifier.Cost} * object which describes the total cost of the given * weights, and includes gradients to be used for further * training */ public Cost computeCostFunction(int batchSize, double regParameter, double dropOutProb) { validateTraining(); List examples = Util.getRandomSubList(dataset.examples, batchSize); // Redo precomputations for only those features which are triggered // by examples in this mini-batch. Set toPreCompute = getToPreCompute(examples); preCompute(toPreCompute); // Set up parameters for feedforward FeedforwardParams params = new FeedforwardParams(batchSize, dropOutProb); // Zero out saved-embedding gradients gradSaved = new double[preMap.size()][config.hiddenSize]; int numChunks = config.trainingThreads; List> chunks = CollectionUtils.partitionIntoFolds(examples, numChunks); // Submit chunks for processing on separate threads for (Collection chunk : chunks) jobHandler.put(new Pair<>(chunk, params)); jobHandler.join(false); // Join costs from each chunk Cost cost = null; while (jobHandler.peek()) { Cost otherCost = jobHandler.poll(); if (cost == null) cost = otherCost; else cost.merge(otherCost); } if (cost == null) return null; // Backpropagate gradients on saved pre-computed values to actual // embeddings cost.backpropSaved(toPreCompute); cost.addL2Regularization(regParameter); return cost; } /** * Update classifier weights using the given training cost * information. * * @param cost Cost information as returned by * {@link #computeCostFunction(int, double, double)}. * @param adaAlpha Global AdaGrad learning rate * @param adaEps Epsilon value for numerical stability in AdaGrad's * division */ public void takeAdaGradientStep(Cost cost, double adaAlpha, double adaEps) { validateTraining(); double[][] gradW1 = cost.getGradW1(), gradW2 = cost.getGradW2(), gradE = cost.getGradE(); double[] gradb1 = cost.getGradb1(); for (int i = 0; i < W1.length; ++i) { for (int j = 0; j < W1[i].length; ++j) { eg2W1[i][j] += gradW1[i][j] * gradW1[i][j]; W1[i][j] -= adaAlpha * gradW1[i][j] / Math.sqrt(eg2W1[i][j] + adaEps); } } for (int i = 0; i < b1.length; ++i) { eg2b1[i] += gradb1[i] * gradb1[i]; b1[i] -= adaAlpha * gradb1[i] / Math.sqrt(eg2b1[i] + adaEps); } for (int i = 0; i < W2.length; ++i) { for (int j = 0; j < W2[i].length; ++j) { eg2W2[i][j] += gradW2[i][j] * gradW2[i][j]; W2[i][j] -= adaAlpha * gradW2[i][j] / Math.sqrt(eg2W2[i][j] + adaEps); } } for (int i = 0; i < E.length; ++i) { for (int j = 0; j < E[i].length; ++j) { eg2E[i][j] += gradE[i][j] * gradE[i][j]; E[i][j] -= adaAlpha * gradE[i][j] / Math.sqrt(eg2E[i][j] + adaEps); } } } private void initGradientHistories() { eg2E = new double[E.length][E[0].length]; eg2W1 = new double[W1.length][W1[0].length]; eg2b1 = new double[b1.length]; eg2W2 = new double[W2.length][W2[0].length]; } /** * Clear all gradient histories used for AdaGrad training. * * @throws java.lang.IllegalStateException If not training */ public void clearGradientHistories() { validateTraining(); initGradientHistories(); } private void validateTraining() { if (!isTraining) throw new IllegalStateException("Not training, or training was already finalized"); } /** * Finish training this classifier; prepare for a shutdown. */ public void finalizeTraining() { validateTraining(); // Destroy threadpool jobHandler.join(true); isTraining = false; } /** * @see #preCompute(java.util.Set) */ public void preCompute() { preCompute(preMap.keySet()); } /** * Pre-compute hidden layer activations for some set of possible * feature inputs. * * @param toPreCompute Set of feature IDs for which hidden layer * activations should be precomputed */ public void preCompute(Set toPreCompute) { long startTime = System.currentTimeMillis(); // NB: It'd make sense to just make the first dimension of this // array the same size as `toPreCompute`, then recalculate all // `preMap` indices to map into this denser array. But this // actually hurt training performance! (See experiments with // "smallMap.") saved = new double[preMap.size()][config.hiddenSize]; for (int x : toPreCompute) { int mapX = preMap.get(x); int tok = x / config.numTokens; int pos = x % config.numTokens; for (int j = 0; j < config.hiddenSize; ++j) for (int k = 0; k < config.embeddingSize; ++k) saved[mapX][j] += W1[j][pos * config.embeddingSize + k] * E[tok][k]; } System.err.println("PreComputed " + toPreCompute.size() + ", Elapsed Time: " + (System .currentTimeMillis() - startTime) / 1000.0 + " (s)"); } double[] computeScores(int[] feature) { return computeScores(feature, preMap); } /** * Feed a feature vector forward through the network. Returns the * values of the output layer. */ private double[] computeScores(int[] feature, Map preMap) { double[] hidden = new double[config.hiddenSize]; int offset = 0; for (int j = 0; j < feature.length; ++j) { int tok = feature[j]; int index = tok * config.numTokens + j; if (preMap.containsKey(index)) { int id = preMap.get(index); for (int i = 0; i < config.hiddenSize; ++i) hidden[i] += saved[id][i]; } else { for (int i = 0; i < config.hiddenSize; ++i) for (int k = 0; k < config.embeddingSize; ++k) hidden[i] += W1[i][offset + k] * E[tok][k]; } offset += config.embeddingSize; } for (int i = 0; i < config.hiddenSize; ++i) { hidden[i] += b1[i]; hidden[i] = hidden[i] * hidden[i] * hidden[i]; // cube nonlinearity } double[] scores = new double[numLabels]; for (int i = 0; i < numLabels; ++i) for (int j = 0; j < config.hiddenSize; ++j) scores[i] += W2[i][j] * hidden[j]; return scores; } public double[][] getW1() { return W1; } public double[] getb1() { return b1; } public double[][] getW2() { return W2; } public double[][] getE() { return E; } /** * Add the two 2d arrays in place of {@code m1}. * * @throws java.lang.IndexOutOfBoundsException (possibly) If * {@code m1} and {@code m2} are not of the same dimensions */ private static void addInPlace(double[][] m1, double[][] m2) { for (int i = 0; i < m1.length; i++) for (int j = 0; j < m1[0].length; j++) m1[i][j] += m2[i][j]; } /** * Add the two 1d arrays in place of {@code a1}. * * @throws java.lang.IndexOutOfBoundsException (Possibly) if * {@code a1} and {@code a2} are not of the same dimensions */ private static void addInPlace(double[] a1, double[] a2) { for (int i = 0; i < a1.length; i++) a1[i] += a2[i]; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy