All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.stanford.nlp.parser.lexparser.ExhaustiveDependencyParser Maven / Gradle / Ivy

Go to download

Stanford Parser processes raw text in English, Chinese, German, Arabic, and French, and extracts constituency parse trees.

There is a newer version: 3.9.2
Show newest version
// Stanford Parser -- a probabilistic lexicalized NL CFG parser
// Copyright (c) 2002-2006 The Board of Trustees of
// The Leland Stanford Junior University. All Rights Reserved.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
//
// For more information, bug reports, fixes, contact:
//    Christopher Manning
//    Dept of Computer Science, Gates 1A
//    Stanford CA 94305-9010
//    USA
//    [email protected]
//    http://nlp.stanford.edu/downloads/lex-parser.shtml

package edu.stanford.nlp.parser.lexparser;

import java.util.*;

import edu.stanford.nlp.util.Index;
import edu.stanford.nlp.util.Timing;
import edu.stanford.nlp.util.StringUtils;
import edu.stanford.nlp.util.ScoredObject;
import edu.stanford.nlp.trees.TreeFactory;
import edu.stanford.nlp.trees.TreebankLanguagePack;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.trees.LabeledScoredTreeFactory;
import edu.stanford.nlp.ling.CategoryWordTag;
import edu.stanford.nlp.ling.HasContext;
import edu.stanford.nlp.ling.HasTag;
import edu.stanford.nlp.ling.HasWord;
import edu.stanford.nlp.ling.Label;
import edu.stanford.nlp.ling.Word;
import edu.stanford.nlp.parser.KBestViterbiParser;
import edu.stanford.nlp.util.RuntimeInterruptedException;


/**
 * An exhaustive O(n4t2) time and O(n2t)
 * space dependency parser.
 * This follows the general
 * picture of the Eisner and Satta dependency parsing papers, but without the
 * tricks in defining items that they use to get an O(n3)
 * dependency parser.  The parser is as described in:
 * 

* Dan Klein and Christopher D. Manning. 2003. Fast Exact Inference with a * Factored Model for Natural Language Parsing. In Suzanna Becker, Sebastian * Thrun, and Klaus Obermayer (eds), Advances in Neural Information Processing * Systems 15 (NIPS 2002). Cambridge, MA: MIT Press, pp. 3-10. * http://nlp.stanford.edu/pubs/lex-parser.pdf *

* * @author Dan Klein */ public class ExhaustiveDependencyParser implements Scorer, KBestViterbiParser { private static final boolean DEBUG = false; private static final boolean DEBUG_MORE = false; private final Index tagIndex; private final Index wordIndex; private TreeFactory tf; private DependencyGrammar dg; private Lexicon lex; private Options op; private TreebankLanguagePack tlp; private List sentence; private int[] words; /** * Max log inner probability score. * * Indices: * 1. headPos - index of head word (one side of subtree) * 2. headTag - which tag assigned * 3. cornerPosition - other end of span, i.e. "corner" of right triangle */ private float[][][] iScoreH; // headPos, headTag, cornerPosition (non-head) /** * Max log outer probability score. Same indices as iScoreH. */ private float[][][] oScoreH; // headPos, headTag, cornerPosition (non-head) /** * Total log inner probability score. Same indices as iScoreH. Designed for * producing summed total probabilities. Unfinished. */ private float[][][] iScoreHSum; /** If true, compute iScoreHSum */ private static final boolean doiScoreHSum = false; private int[][] rawDistance; int[][] binDistance; // reused in other class, so can't be private float[][][][][] headScore; float[][][] headStop; // headPos, headTag, split private boolean[][][] oPossibleByL; private boolean[][][] oPossibleByR; private boolean[][][] iPossibleByL; private boolean[][][] iPossibleByR; private int arraySize = 0; private int myMaxLength = -0xDEADBEEF; float oScore(int start, int end, int head, int tag) { return oScoreH[head][dg.tagBin(tag)][start] + oScoreH[head][dg.tagBin(tag)][end]; } /** * Probability of *most likely* parse having word (at head) with given POS * tag as marker on tree over start (inclusive) ... end (exclusive). Found * by summing (product done in log space) the log probabilities in the two * half-triangles. The indices of iScoreH are: (1) head word index, * (2) head tag assigned, and (3) other corner that ends span. */ float iScore(int start, int end, int head, int tag) { return iScoreH[head][dg.tagBin(tag)][start] + iScoreH[head][dg.tagBin(tag)][end]; } /** * Total probability of all parses having word (at head) with given POS tag * as marker on tree over start (inclusive) .. end (exclusive). * * TODO: CURRENTLY UNTESTED! */ float iScoreTotal(int start, int end, int head, int tag) { if (!doiScoreHSum) { throw new RuntimeException("Summed inner scores not computed"); } // log scores: so + => * and exploiting independence of left and right choices return iScoreHSum[head][dg.tagBin(tag)][start] + iScoreHSum[head][dg.tagBin(tag)][end]; } public double oScore(Edge edge) { return oScore(edge.start, edge.end, edge.head, edge.tag); } public double iScore(Edge edge) { return iScore(edge.start, edge.end, edge.head, edge.tag); } public boolean oPossible(Hook hook) { return (hook.isPreHook() ? oPossibleByR[hook.end][hook.head][dg.tagBin(hook.tag)] : oPossibleByL[hook.start][hook.head][dg.tagBin(hook.tag)]); } public boolean iPossible(Hook hook) { return (hook.isPreHook() ? iPossibleByR[hook.start][hook.head][dg.tagBin(hook.tag)] : iPossibleByL[hook.end][hook.head][dg.tagBin(hook.tag)]); } public boolean parse(List sentence) { if (op.testOptions.verbose) { Timing.tick("Starting dependency parse."); } this.sentence = sentence; int length = sentence.size(); if (length > arraySize) { if (length > op.testOptions.maxLength + 1 || length >= myMaxLength) { throw new OutOfMemoryError("Refusal to create such large arrays."); } else { try { createArrays(length + 1); } catch (OutOfMemoryError e) { myMaxLength = length; if (arraySize > 0) { try { createArrays(arraySize); } catch (OutOfMemoryError e2) { throw new RuntimeException("CANNOT EVEN CREATE ARRAYS OF ORIGINAL SIZE!!! " + arraySize); } } throw e; } arraySize = length + 1; if (op.testOptions.verbose) { System.err.println("Created dparser arrays of size " + arraySize); } } } if (op.testOptions.verbose) { System.err.print("Initializing..."); } // map to words words = new int[length]; int numTags = dg.numTagBins();//tagIndex.size(); //System.out.println("\nNumTags: "+numTags); //System.out.println(tagIndex); boolean[][] hasTag = new boolean[length][numTags]; for (int i = 0; i < length; i++) { //if (wordIndex.contains(sentence.get(i).toString())) words[i] = wordIndex.addToIndex(sentence.get(i).word()); //else //words[i] = wordIndex.indexOf(Lexicon.UNKNOWN_WORD); } for (int head = 0; head < length; head++) { for (int tag = 0; tag < numTags; tag++) { Arrays.fill(iScoreH[head][tag], Float.NEGATIVE_INFINITY); Arrays.fill(oScoreH[head][tag], Float.NEGATIVE_INFINITY); if (doiScoreHSum) { Arrays.fill(iScoreHSum[head][tag], Float.NEGATIVE_INFINITY); } } } for (int head = 0; head < length; head++) { for (int loc = 0; loc <= length; loc++) { rawDistance[head][loc] = (head >= loc ? head - loc : loc - head - 1); binDistance[head][loc] = dg.distanceBin(rawDistance[head][loc]); } } if (Thread.interrupted()) { throw new RuntimeInterruptedException(); } // do tags for (int start = 0; start + 1 <= length; start++) { //Force tags String trueTagStr = null; if (sentence.get(start) instanceof HasTag) { trueTagStr = ((HasTag) sentence.get(start)).tag(); if ("".equals(trueTagStr)) { trueTagStr = null; } } //Word context (e.g., morphosyntactic info) String wordContextStr = null; if(sentence.get(start) instanceof HasContext) { wordContextStr = ((HasContext) sentence.get(start)).originalText(); if("".equals(wordContextStr)) wordContextStr = null; } int word = words[start]; for (Iterator taggingI = lex.ruleIteratorByWord(word, start, wordContextStr); taggingI.hasNext();) { IntTaggedWord tagging = taggingI.next(); if (trueTagStr != null) { if (!tlp.basicCategory(tagging.tagString(tagIndex)).equals(trueTagStr)) { continue; } } float score = lex.score(tagging, start, wordIndex.get(tagging.word), wordContextStr); //iScoreH[start][tag][start] = (op.dcTags ? (float)op.testOptions.depWeight*score : 0.0f); if (score > Float.NEGATIVE_INFINITY) { int tag = tagging.tag; iScoreH[start][dg.tagBin(tag)][start] = 0.0f; iScoreH[start][dg.tagBin(tag)][start + 1] = 0.0f; if (doiScoreHSum) { iScoreHSum[start][dg.tagBin(tag)][start] = 0.0f; iScoreHSum[start][dg.tagBin(tag)][start+1] = 0.0f; } if (DEBUG) System.err.println("DepParser accepted tagging: " + wordIndex.get(tagging.word)+"|"+tagIndex.get(tagging.tag) + ", got score " + score); } } } for (int hWord = 0; hWord < length; hWord++) { for (int hTag = 0; hTag < numTags; hTag++) { hasTag[hWord][hTag] = (iScoreH[hWord][hTag][hWord] + iScoreH[hWord][hTag][hWord + 1] > Float.NEGATIVE_INFINITY); Arrays.fill(headStop[hWord][hTag], Float.NEGATIVE_INFINITY); for (int aWord = 0; aWord < length; aWord++) { for (int dist = 0; dist < dg.numDistBins(); dist++) { Arrays.fill(headScore[dist][hWord][hTag][aWord], Float.NEGATIVE_INFINITY); } } } } // score and cache all pairs -- headScores and stops //int hit = 0; for (int hWord = 0; hWord < length; hWord++) { for (int hTag = 0; hTag < numTags; hTag++) { //Arrays.fill(headStopL[hWord][hTag], Float.NEGATIVE_INFINITY); //Arrays.fill(headStopR[hWord][hTag], Float.NEGATIVE_INFINITY); //Arrays.fill(headStop[hWord][hTag], Float.NEGATIVE_INFINITY); if (!hasTag[hWord][hTag]) { continue; } for (int split = 0; split <= length; split++) { if (split <= hWord) { headStop[hWord][hTag][split] = (float) dg.scoreTB(words[hWord], hTag, -2, -2, false, hWord - split); //System.out.println("headstopL " + hWord +" " + hTag + " " + split + " " + headStopL[hWord][hTag][split]); // debugging } else { headStop[hWord][hTag][split] = (float) dg.scoreTB(words[hWord], hTag, -2, -2, true, split - hWord - 1); //System.out.println("headstopR " + hWord +" " + hTag + " " + split + " " + headStopR[hWord][hTag][split]); // debugging } //hit++; } //Timing.tick("hWord: "+hWord+" hTag: "+hTag+" piddle count: "+hit); for (int aWord = 0; aWord < length; aWord++) { if (aWord == hWord) { continue; // can't be argument of yourself } boolean leftHeaded = hWord < aWord; int start; int end; if (leftHeaded) { start = hWord + 1; end = aWord + 1; } else { start = aWord + 1; end = hWord + 1; } for (int aTag = 0; aTag < numTags; aTag++) { if ( ! hasTag[aWord][aTag]) { continue; } for (int split = start; split < end; split++) { // Moved this stuff out two loops- GMA // for (int split = 0; split <= length; split++) { // if leftHeaded, go from hWord+1 to aWord // else go from aWord+1 to hWord // if ((leftHeaded && (split <= hWord || split > aWord)) || // ((!leftHeaded) && (split <= aWord || split > hWord))) // continue; int headDistance = rawDistance[hWord][split]; int binDist = binDistance[hWord][split]; headScore[binDist][hWord][hTag][aWord][aTag] = (float) dg.scoreTB(words[hWord], hTag, words[aWord], aTag, leftHeaded, headDistance); //hit++; if (DEBUG) { System.err.println("Dep score head -> dep: " + wordIndex.get(words[hWord]) + "/" + tagIndex.get(hTag) + "[" + hWord + "] -> " + wordIndex.get(words[aWord]) + "/" + tagIndex.get(aTag) + "[" + aWord + "] split [" + split + "] = " + headScore[binDist][hWord][hTag][aWord][aTag]); } // skip other splits with same binDist while (split + 1 < end && binDistance[hWord][split + 1] == binDist) { split++; } } // end split } // end aTag } // end aWord } // end hTag } // end hWord if (op.testOptions.verbose) { Timing.tick("done."); // displayHeadScores(); System.err.print("Starting insides..."); } // do larger spans for (int diff = 2; diff <= length; diff++) { if (Thread.interrupted()) { throw new RuntimeInterruptedException(); } if (DEBUG_MORE) System.err.println("SPAN " + diff + ": score = headPrev + argLeft + argRight + dep + argLStop + argRStop"); for (int start = 0; start + diff <= length; start++) { int end = start + diff; // left extension int endHead = end - 1; for (int endTag = 0; endTag < numTags; endTag++) { if ( ! hasTag[endHead][endTag]) { continue; } // bestScore is max for iScoreH float bestScore = Float.NEGATIVE_INFINITY; for (int argHead = start; argHead < endHead; argHead++) { for (int argTag = 0; argTag < numTags; argTag++) { if (!hasTag[argHead][argTag]) { continue; } float argLeftScore = iScoreH[argHead][argTag][start]; if (argLeftScore == Float.NEGATIVE_INFINITY) { continue; } float stopLeftScore = headStop[argHead][argTag][start]; if (stopLeftScore == Float.NEGATIVE_INFINITY) { continue; } for (int split = argHead + 1; split < end; split++) { // short circuit if dependency is impossible float depScore = headScore[binDistance[endHead][split]][endHead][endTag][argHead][argTag]; if (depScore == Float.NEGATIVE_INFINITY) { continue; } float score = iScoreH[endHead][endTag][split] + argLeftScore + iScoreH[argHead][argTag][split] + depScore + stopLeftScore + headStop[argHead][argTag][split]; if (DEBUG_MORE) { System.err.println("Left extend " + wordIndex.get(words[endHead]) + "/" + tagIndex.get(endTag) + "[" + endHead + "] -> " + wordIndex.get(words[argHead]) + "/" + tagIndex.get(argTag) + "[" + argHead + "](" + start + "," + split + ")"); System.err.println(" " + score + " = SUM " + iScoreH[endHead][endTag][split] + " " + argLeftScore + " " + iScoreH[argHead][argTag][split] + " " + depScore + " " + headStop[argHead][argTag][start] + " " + headStop[argHead][argTag][split]); } if (score > bestScore) { bestScore = score; } } // end for split // sum for iScoreHSum if (doiScoreHSum) { double p = Math.exp(iScoreHSum[endHead][endTag][start]); for (int split = argHead + 1; split < end; split++) { p += Math.exp(iScoreH[argHead][argTag][start] + iScoreH[argHead][argTag][split] + headScore[binDistance[endHead][split]][endHead][endTag][argHead][argTag] + headStop[argHead][argTag][start] + headStop[argHead][argTag][split]); } iScoreHSum[endHead][endTag][start] = (float)Math.log(p); } } // end for argTag : tags } // end for argHead iScoreH[endHead][endTag][start] = bestScore; } // end for endTag : tags // right extension int startHead = start; for (int startTag = 0; startTag < numTags; startTag++) { if ( ! hasTag[startHead][startTag]) { continue; } // bestScore is max for iScoreH float bestScore = Float.NEGATIVE_INFINITY; for (int argHead = start + 1; argHead < end; argHead++) { for (int argTag = 0; argTag < numTags; argTag++) { if (!hasTag[argHead][argTag]) { continue; } float argRightScore = iScoreH[argHead][argTag][end]; if (argRightScore == Float.NEGATIVE_INFINITY) { continue; } float stopRightScore = headStop[argHead][argTag][end]; if (stopRightScore == Float.NEGATIVE_INFINITY) { continue; } for (int split = start + 1; split <= argHead; split++) { // short circuit if dependency is impossible float depScore = headScore[binDistance[startHead][split]][startHead][startTag][argHead][argTag]; if (depScore == Float.NEGATIVE_INFINITY) { continue; } float score = iScoreH[startHead][startTag][split] + iScoreH[argHead][argTag][split] + argRightScore + depScore + stopRightScore + headStop[argHead][argTag][split]; if (DEBUG_MORE) { System.err.println("Right extend " + wordIndex.get(words[startHead]) + "/" + tagIndex.get(startTag) + "[" + startHead + "] -> " + wordIndex.get(words[argHead]) + "/" + tagIndex.get(argTag) + "[" + argHead + "](" + split + "," + end + ")"); System.err.println(" " + score + " = SUM " + iScoreH[startHead][startTag][split] + " " + iScoreH[argHead][argTag][split] + " " + argRightScore + " " + depScore + " " + headStop[argHead][argTag][end] + " " + headStop[argHead][argTag][split]); } if (score > bestScore) { bestScore = score; } } // sum for iScoreHSum if (doiScoreHSum) { double p = Math.exp(iScoreHSum[startHead][startTag][end]); for (int split = argHead + 1; split < end; split++) { p += Math.exp(iScoreH[startHead][startTag][split] + iScoreH[argHead][argTag][split] + iScoreH[argHead][argTag][end] + headScore[binDistance[startHead][split]][startHead][startTag][argHead][argTag] + headStop[argHead][argTag][end] + headStop[argHead][argTag][split]); } iScoreHSum[startHead][startTag][end] = (float)Math.log(p); } } // end for argTag: tags } // end for argHead iScoreH[startHead][startTag][end] = bestScore; } // end for startTag: tags } // end for start } // end for diff (i.e., span) int goalTag = dg.tagBin(tagIndex.indexOf(Lexicon.BOUNDARY_TAG)); if (op.testOptions.verbose) { Timing.tick("done."); System.err.println("Dep parsing " + length + " words (incl. stop): insideScore " + (iScoreH[length - 1][goalTag][0] + iScoreH[length - 1][goalTag][length])); } if ( ! op.doPCFG) { return hasParse(); } if (op.testOptions.verbose) { System.err.print("Starting outsides..."); } oScoreH[length - 1][goalTag][0] = 0.0f; oScoreH[length - 1][goalTag][length] = 0.0f; for (int diff = length; diff > 1; diff--) { if (Thread.interrupted()) { throw new RuntimeInterruptedException(); } for (int start = 0; start + diff <= length; start++) { int end = start + diff; // left half int endHead = end - 1; for (int endTag = 0; endTag < numTags; endTag++) { if (!hasTag[endHead][endTag]) { continue; } for (int argHead = start; argHead < endHead; argHead++) { for (int argTag = 0; argTag < numTags; argTag++) { if (!hasTag[argHead][argTag]) { continue; } for (int split = argHead; split <= endHead; split++) { float subScore = (oScoreH[endHead][endTag][start] + headScore[binDistance[endHead][split]][endHead][endTag][argHead][argTag] + headStop[argHead][argTag][start] + headStop[argHead][argTag][split]); float scoreRight = (subScore + iScoreH[argHead][argTag][start] + iScoreH[argHead][argTag][split]); float scoreMid = (subScore + iScoreH[argHead][argTag][start] + iScoreH[endHead][endTag][split]); float scoreLeft = (subScore + iScoreH[argHead][argTag][split] + iScoreH[endHead][endTag][split]); if (scoreRight > oScoreH[endHead][endTag][split]) { oScoreH[endHead][endTag][split] = scoreRight; } if (scoreMid > oScoreH[argHead][argTag][split]) { oScoreH[argHead][argTag][split] = scoreMid; } if (scoreLeft > oScoreH[argHead][argTag][start]) { oScoreH[argHead][argTag][start] = scoreLeft; } } } } } // right half int startHead = start; for (int startTag = 0; startTag < numTags; startTag++) { if (!hasTag[startHead][startTag]) { continue; } for (int argHead = startHead + 1; argHead < end; argHead++) { for (int argTag = 0; argTag < numTags; argTag++) { if (!hasTag[argHead][argTag]) { continue; } for (int split = startHead + 1; split <= argHead; split++) { float subScore = (oScoreH[startHead][startTag][end] + headScore[binDistance[startHead][split]][startHead][startTag][argHead][argTag] + headStop[argHead][argTag][split] + headStop[argHead][argTag][end]); float scoreLeft = (subScore + iScoreH[argHead][argTag][split] + iScoreH[argHead][argTag][end]); float scoreMid = (subScore + iScoreH[startHead][startTag][split] + iScoreH[argHead][argTag][end]); float scoreRight = (subScore + iScoreH[startHead][startTag][split] + iScoreH[argHead][argTag][split]); if (scoreLeft > oScoreH[startHead][startTag][split]) { oScoreH[startHead][startTag][split] = scoreLeft; } if (scoreMid > oScoreH[argHead][argTag][split]) { oScoreH[argHead][argTag][split] = scoreMid; } if (scoreRight > oScoreH[argHead][argTag][end]) { oScoreH[argHead][argTag][end] = scoreRight; } } } } } } } if (op.testOptions.verbose) { Timing.tick("done."); System.err.print("Starting half-filters..."); } for (int loc = 0; loc <= length; loc++) { for (int head = 0; head < length; head++) { Arrays.fill(iPossibleByL[loc][head], false); Arrays.fill(iPossibleByR[loc][head], false); Arrays.fill(oPossibleByL[loc][head], false); Arrays.fill(oPossibleByR[loc][head], false); } } if (Thread.interrupted()) { throw new RuntimeInterruptedException(); } for (int head = 0; head < length; head++) { for (int tag = 0; tag < numTags; tag++) { if (!hasTag[head][tag]) { continue; } for (int start = 0; start <= head; start++) { for (int end = head + 1; end <= length; end++) { if (iScoreH[head][tag][start] + iScoreH[head][tag][end] > Float.NEGATIVE_INFINITY && oScoreH[head][tag][start] + oScoreH[head][tag][end] > Float.NEGATIVE_INFINITY) { iPossibleByR[end][head][tag] = true; iPossibleByL[start][head][tag] = true; oPossibleByR[end][head][tag] = true; oPossibleByL[start][head][tag] = true; } } } } } if (op.testOptions.verbose) { Timing.tick("done."); } return hasParse(); } public boolean hasParse() { return getBestScore() > Float.NEGATIVE_INFINITY; } public double getBestScore() { int length = sentence.size(); if (length > arraySize) { return Float.NEGATIVE_INFINITY; } int goalTag = tagIndex.indexOf(Lexicon.BOUNDARY_TAG); return iScore(0, length, length - 1, goalTag); } /** * This displays a headScore matrix, which will be valid after parsing * a sentence. Unclear yet whether this is valid/useful [cdm]. */ public void displayHeadScores() { int numTags = tagIndex.size(); System.out.println("---- headScore matrix (head x dep, best tags) ----"); System.out.print(StringUtils.padOrTrim("", 6)); for (int i = 0; i < words.length; i++) { System.out.print(" " + StringUtils.padOrTrim(wordIndex.get(words[i]), 2)); } System.out.println(); for (int hWord = 0; hWord < words.length; hWord++) { System.out.print(StringUtils.padOrTrim(wordIndex.get(words[hWord]), 6)); int bigBD = -1, bigHTag = -1, bigATag = -1; for (int aWord = 0; aWord < words.length; aWord++) { // we basically just max of all the variables, but for distance > 0, we // include a factor for generating something at distance 0, or else // the result is too whacked out to be useful float biggest = Float.NEGATIVE_INFINITY; for (int bd = 0; bd < dg.numDistBins(); bd++) { for (int hTag = 0; hTag < numTags; hTag++) { /* float penalty = 0.0f; if (bd != 0) { penalty = (float) dg.score(words[hWord], hTag, -2, -2, aWord > hWord, 0); penalty = (float) Math.log(1.0 - Math.exp(penalty)); } for (int aTag = 0; aTag < numTags; aTag++) { if (headScore[bd][hWord][hTag][aWord][aTag] + penalty > biggest) { biggest = headScore[bd][hWord][hTag][aWord][aTag] + penalty; */ for (int aTag = 0; aTag < numTags; aTag++) { if (headScore[bd][hWord][dg.tagBin(hTag)][aWord][dg.tagBin(aTag)] > biggest) { biggest = headScore[bd][hWord][dg.tagBin(hTag)][aWord][dg.tagBin(aTag)]; bigBD = bd; bigHTag = hTag; bigATag = aTag; } } } } if (Float.isInfinite(biggest)) { System.out.print(" " + StringUtils.padOrTrim("in", 2)); } else { int score = Math.round(Math.abs(headScore[bigBD][hWord][dg.tagBin(bigHTag)][aWord][dg.tagBin(bigATag)])); System.out.print(" " + StringUtils.padOrTrim(Integer.toString(score), 2)); } } System.out.println(); } } private static final double TOL = 1e-5; private static boolean matches(double x, double y) { return (Math.abs(x - y) / (Math.abs(x) + Math.abs(y) + 1e-10) < TOL); } /** Find the best (partial) parse within the parameter constraints. * @param start Sentence index of start of span (fenceposts, from 0 up) * @param end Sentence index of end of span (right side fencepost) * @param hWord Sentence index of head word (left side fencepost) * @param hTag Tag assigned to hWord * @return The best parse tree within the parameter constraints */ private Tree extractBestParse(int start, int end, int hWord, int hTag) { if (DEBUG) { System.err.println("Span "+start+" to "+end+" word "+wordIndex.get(words[hWord])+"/"+hWord+" tag "+tagIndex.get(hTag)+"/"+hTag+" score "+iScore(start, end, hWord, hTag)); } String headWordStr = wordIndex.get(words[hWord]); String headTagStr = tagIndex.get(hTag); Label headLabel = new CategoryWordTag(headWordStr, headWordStr, headTagStr); int numTags = tagIndex.size(); // deal with span 1 if (end - start == 1) { Tree leaf = tf.newLeaf(new Word(headWordStr)); return tf.newTreeNode(headLabel, Collections.singletonList(leaf)); } // find backtrace List children = new ArrayList(); double bestScore = iScore(start, end, hWord, hTag); for (int split = start + 1; split < end; split++) { int binD = binDistance[hWord][split]; if (hWord < split) { for (int aWord = split; aWord < end; aWord++) { for (int aTag = 0; aTag < numTags; aTag++) { if (matches(iScore(start, split, hWord, hTag) + iScore(split, end, aWord, aTag) + headScore[binD][hWord][dg.tagBin(hTag)][aWord][dg.tagBin(aTag)] + headStop[aWord][dg.tagBin(aTag)][split] + headStop[aWord][dg.tagBin(aTag)][end], bestScore)) { if (DEBUG) { String argWordStr = wordIndex.get(words[aWord]); String argTagStr = tagIndex.get(aTag); System.err.println(headWordStr+"|"+headTagStr+" -> "+argWordStr+"|"+argTagStr+" "+bestScore); } // build it children.add(extractBestParse(start, split, hWord, hTag)); children.add(extractBestParse(split, end, aWord, aTag)); return tf.newTreeNode(headLabel, children); } } } } else { for (int aWord = start; aWord < split; aWord++) { for (int aTag = 0; aTag < numTags; aTag++) { if (matches(iScore(start, split, aWord, aTag) + iScore(split, end, hWord, hTag) + headScore[binD][hWord][dg.tagBin(hTag)][aWord][dg.tagBin(aTag)] + headStop[aWord][dg.tagBin(aTag)][start] + headStop[aWord][dg.tagBin(aTag)][split], bestScore)) { if (DEBUG) { String argWordStr = wordIndex.get(words[aWord]); String argTagStr = tagIndex.get(aTag); System.err.println(headWordStr+"|"+headTagStr+" -> "+argWordStr+"|"+argTagStr+" "+bestScore); } children.add(extractBestParse(start, split, aWord, aTag)); children.add(extractBestParse(split, end, hWord, hTag)); // build it return tf.newTreeNode(headLabel, children); } } } } } System.err.println("Problem in ExhaustiveDependencyParser::extractBestParse"); return null; } private Tree flatten(Tree tree) { if (tree.isLeaf() || tree.isPreTerminal()) { return tree; } List newChildren = new ArrayList(); Tree[] children = tree.children(); for (Tree child : children) { Tree newChild = flatten(child); if (!newChild.isPreTerminal() && newChild.label().toString().equals(tree.label().toString())) { newChildren.addAll(newChild.getChildrenAsList()); } else { newChildren.add(newChild); } } return tf.newTreeNode(tree.label(), newChildren); } /** Return the best dependency parse for a sentence. You must call * parse() before a call to this method. *

* Implementation note: the best parse is recalculated from the chart * each time this method is called. It isn't cached. * * @return The best dependency parse for a sentence or null. * The returned tree will begin with a binary branching node, the * left branch of which is the dependency tree proper, and the right * side of which contains a boundary word .$. which heads the * sentence. */ public Tree getBestParse() { if ( ! hasParse()) { return null; } return flatten(extractBestParse(0, words.length, words.length - 1, tagIndex.indexOf(Lexicon.BOUNDARY_TAG))); } public ExhaustiveDependencyParser(DependencyGrammar dg, Lexicon lex, Options op, Index wordIndex, Index tagIndex) { this.dg = dg; this.lex = lex; this.op = op; this.tlp = op.langpack(); this.wordIndex = wordIndex; this.tagIndex = tagIndex; tf = new LabeledScoredTreeFactory(); } private void createArrays(int length) { iScoreH = oScoreH = headStop = iScoreHSum = null; iPossibleByL = iPossibleByR = oPossibleByL = oPossibleByR = null; headScore = null; rawDistance = binDistance = null; int tagNum = dg.numTagBins(); //tagIndex.size(); iScoreH = new float[length + 1][tagNum][length + 1]; oScoreH = new float[length + 1][tagNum][length + 1]; if (doiScoreHSum) { iScoreHSum = new float[length + 1][tagNum][length + 1]; } iPossibleByL = new boolean[length + 1][length + 1][tagNum]; iPossibleByR = new boolean[length + 1][length + 1][tagNum]; oPossibleByL = new boolean[length + 1][length + 1][tagNum]; oPossibleByR = new boolean[length + 1][length + 1][tagNum]; headScore = new float[dg.numDistBins()][length][tagNum][length][tagNum]; headStop = new float[length + 1][tagNum][length + 1]; rawDistance = new int[length + 1][length + 1]; binDistance = new int[length + 1][length + 1]; } /** Get the exact k best parses for the sentence. * * @param k The number of best parses to return * @return The exact k best parses for the sentence, with * each accompanied by its score (typically a * negative log probability). */ public List> getKBestParses(int k) { throw new UnsupportedOperationException("Doesn't do k best yet"); } /** Get a complete set of the maximally scoring parses for a sentence, * rather than one chosen at random. This set may be of size 1 or larger. * * @return All the equal best parses for a sentence, with each * accompanied by its score */ public List> getBestParses() { throw new UnsupportedOperationException("Doesn't do best parses yet"); } /** Get k good parses for the sentence. It is expected that the * parses returned approximate the k best parses, but without any * guarantee that the exact list of k best parses has been produced. * If a class really provides k best parses functionality, it is * reasonable to also return this output as the k good parses. * * @param k The number of good parses to return * @return A list of k good parses for the sentence, with * each accompanied by its score */ public List> getKGoodParses(int k) { throw new UnsupportedOperationException("Doesn't do k good yet"); } /** Get k parse samples for the sentence. It is expected that the * parses are sampled based on their relative probability. * * @param k The number of sampled parses to return * @return A list of k parse samples for the sentence, with * each accompanied by its score */ public List> getKSampledParses(int k) { throw new UnsupportedOperationException("Doesn't do k sampled yet"); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy