edu.stanford.nlp.parser.lexparser.MLEDependencyGrammar Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of stanford-parser Show documentation
Show all versions of stanford-parser Show documentation
Stanford Parser processes raw text in English, Chinese, German, Arabic, and French, and extracts constituency parse trees.
package edu.stanford.nlp.parser.lexparser;
import edu.stanford.nlp.ling.HasTag;
import edu.stanford.nlp.ling.HasWord;
import edu.stanford.nlp.stats.ClassicCounter;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.util.StringUtils;
import edu.stanford.nlp.util.HashIndex;
import edu.stanford.nlp.util.Index;
import static edu.stanford.nlp.parser.lexparser.IntTaggedWord.ANY_WORD_INT;
import static edu.stanford.nlp.parser.lexparser.IntTaggedWord.ANY_TAG_INT;
import static edu.stanford.nlp.parser.lexparser.IntTaggedWord.STOP_WORD_INT;
import static edu.stanford.nlp.parser.lexparser.IntTaggedWord.STOP_TAG_INT;
import static edu.stanford.nlp.parser.lexparser.IntDependency.ANY_DISTANCE_INT;
import java.io.*;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
public class MLEDependencyGrammar extends AbstractDependencyGrammar {
final boolean useSmoothTagProjection;
final boolean useUnigramWordSmoothing;
static final boolean DEBUG = false;
protected int numWordTokens;
/** Stores all the counts for dependencies (with and without the word
* being a wildcard) in the reduced tag space.
*/
protected ClassicCounter argCounter;
protected ClassicCounter stopCounter; // reduced tag space
/** Bayesian m-estimate prior for aT given hTWd against base distribution
* of aT given hTd.
* TODO: Note that these values are overwritten in the constructor. Find what is best and then maybe remove these defaults!
*/
public double smooth_aT_hTWd = 32.0;
/** Bayesian m-estimate prior for aTW given hTWd against base distribution
* of aTW given hTd.
*/
public double smooth_aTW_hTWd = 16.0;
public double smooth_stop = 4.0;
/** Interpolation between model that directly predicts aTW and model
* that predicts aT and then aW given aT. This percent of the mass
* is on the model directly predicting aTW.
*/
public double interp = 0.6;
// public double distanceDecay = 0.0;
// extra smoothing hyperparameters for tag projection backoff. Only used if useSmoothTagProjection is true.
public double smooth_aTW_aT = 96.0; // back off Bayesian m-estimate of aTW given aT to aPTW given aPT
public double smooth_aTW_hTd = 32.0; // back off Bayesian m-estimate of aTW_hTd to aPTW_hPTd (?? guessed, not tuned)
public double smooth_aT_hTd = 32.0; // back off Bayesian m-estimate of aT_hTd to aPT_hPTd (?? guessed, not tuned)
public double smooth_aPTW_aPT = 16.0; // back off word prediction from tag to projected tag (only used if useUnigramWordSmoothing is true)
public MLEDependencyGrammar(TreebankLangParserParams tlpParams, boolean directional, boolean distance, boolean coarseDistance, boolean basicCategoryTagsInDependencyGrammar, Options op, Index wordIndex, Index tagIndex) {
this(basicCategoryTagsInDependencyGrammar ? new BasicCategoryTagProjection(tlpParams.treebankLanguagePack()) : new TestTagProjection(), tlpParams, directional, distance, coarseDistance, op, wordIndex, tagIndex);
}
public MLEDependencyGrammar(TagProjection tagProjection, TreebankLangParserParams tlpParams, boolean directional, boolean useDistance, boolean useCoarseDistance, Options op, Index wordIndex, Index tagIndex) {
super(tlpParams.treebankLanguagePack(), tagProjection, directional, useDistance, useCoarseDistance, op, wordIndex, tagIndex);
useSmoothTagProjection = op.useSmoothTagProjection;
useUnigramWordSmoothing = op.useUnigramWordSmoothing;
argCounter = new ClassicCounter<>();
stopCounter = new ClassicCounter<>();
double[] smoothParams = tlpParams.MLEDependencyGrammarSmoothingParams();
smooth_aT_hTWd = smoothParams[0];
smooth_aTW_hTWd = smoothParams[1];
smooth_stop = smoothParams[2];
interp = smoothParams[3];
// cdm added Jan 2007 to play with dep grammar smoothing. Integrate this better if we keep it!
smoothTP = new BasicCategoryTagProjection(tlpParams.treebankLanguagePack());
}
@Override
public String toString() {
NumberFormat nf = NumberFormat.getNumberInstance();
nf.setMaximumFractionDigits(2);
StringBuilder sb = new StringBuilder(2000);
String cl = getClass().getName();
sb.append(cl.substring(cl.lastIndexOf('.') + 1)).append("[tagbins=");
sb.append(numTagBins).append(",wordTokens=").append(numWordTokens).append("; head -> arg\n");
// for (Iterator dI = coreDependencies.keySet().iterator(); dI.hasNext();) {
// IntDependency d = (IntDependency) dI.next();
// double count = coreDependencies.getCount(d);
// sb.append(d + " count " + nf.format(count));
// if (dI.hasNext()) {
// sb.append(",");
// }
// sb.append("\n");
// }
sb.append("]");
return sb.toString();
}
public boolean pruneTW(IntTaggedWord argTW) {
String[] punctTags = tlp.punctuationTags();
for (String punctTag : punctTags) {
if (argTW.tag == tagIndex.indexOf(punctTag)) {
return true;
}
}
return false;
}
static class EndHead {
public int end;
public int head;
}
/** Adds dependencies to list depList. These are in terms of the original
* tag set not the reduced (projected) tag set.
*/
protected static EndHead treeToDependencyHelper(Tree tree, List depList, int loc, Index wordIndex, Index tagIndex) {
// try {
// PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out,"GB18030"),true);
// tree.pennPrint(pw);
// }
// catch (UnsupportedEncodingException e) {}
if (tree.isLeaf() || tree.isPreTerminal()) {
EndHead tempEndHead = new EndHead();
tempEndHead.head = loc;
tempEndHead.end = loc + 1;
return tempEndHead;
}
Tree[] kids = tree.children();
if (kids.length == 1) {
return treeToDependencyHelper(kids[0], depList, loc, wordIndex, tagIndex);
}
EndHead tempEndHead = treeToDependencyHelper(kids[0], depList, loc, wordIndex, tagIndex);
int lHead = tempEndHead.head;
int split = tempEndHead.end;
tempEndHead = treeToDependencyHelper(kids[1], depList, tempEndHead.end, wordIndex, tagIndex);
int end = tempEndHead.end;
int rHead = tempEndHead.head;
String hTag = ((HasTag) tree.label()).tag();
String lTag = ((HasTag) kids[0].label()).tag();
String rTag = ((HasTag) kids[1].label()).tag();
String hWord = ((HasWord) tree.label()).word();
String lWord = ((HasWord) kids[0].label()).word();
String rWord = ((HasWord) kids[1].label()).word();
boolean leftHeaded = hWord.equals(lWord);
String aTag = (leftHeaded ? rTag : lTag);
String aWord = (leftHeaded ? rWord : lWord);
int hT = tagIndex.indexOf(hTag);
int aT = tagIndex.indexOf(aTag);
int hW = (wordIndex.contains(hWord) ? wordIndex.indexOf(hWord) : wordIndex.indexOf(Lexicon.UNKNOWN_WORD));
int aW = (wordIndex.contains(aWord) ? wordIndex.indexOf(aWord) : wordIndex.indexOf(Lexicon.UNKNOWN_WORD));
int head = (leftHeaded ? lHead : rHead);
int arg = (leftHeaded ? rHead : lHead);
IntDependency dependency = new IntDependency(hW, hT, aW, aT, leftHeaded, (leftHeaded ? split - head - 1 : head - split));
depList.add(dependency);
IntDependency stopL = new IntDependency(aW, aT, STOP_WORD_INT, STOP_TAG_INT, false, (leftHeaded ? arg - split : arg - loc));
depList.add(stopL);
IntDependency stopR = new IntDependency(aW, aT, STOP_WORD_INT, STOP_TAG_INT, true, (leftHeaded ? end - arg - 1 : split - arg - 1));
depList.add(stopR);
//System.out.println("Adding: "+dependency+" at "+tree.label());
tempEndHead.head = head;
return tempEndHead;
}
public void dumpSizes() {
// System.out.println("core dep " + coreDependencies.size());
System.out.println("arg counter " + argCounter.size());
System.out.println("stop counter " + stopCounter.size());
}
/** Returns the List of dependencies for a binarized Tree.
* In this tree, one of the two children always equals the head.
* The dependencies are in terms of
* the original tag set not the reduced (projected) tag set.
*
* @param tree A tree to be analyzed as dependencies
* @return The list of dependencies in the tree (int format)
*/
public static List treeToDependencyList(Tree tree, Index wordIndex, Index tagIndex) {
List depList = new ArrayList<>();
treeToDependencyHelper(tree, depList, 0, wordIndex, tagIndex);
if (DEBUG) {
System.out.println("----------------------------");
tree.pennPrint();
System.out.println(depList);
}
return depList;
}
public double scoreAll(Collection deps) {
double totalScore = 0.0;
for (IntDependency d : deps) {
//if (d.head.word == wordIndex.indexOf("via") ||
// d.arg.word == wordIndex.indexOf("via"))
//System.out.println(d+" at "+score(d));
double score = score(d);
if (score > Double.NEGATIVE_INFINITY) {
totalScore += score;
}
}
return totalScore;
}
/** Tune the smoothing and interpolation parameters of the dependency
* grammar based on a tuning treebank.
*
* @param trees A Collection of Trees for setting parameters
*/
@Override
public void tune(Collection trees) {
List deps = new ArrayList<>();
for (Tree tree : trees) {
deps.addAll(treeToDependencyList(tree, wordIndex, tagIndex));
}
double bestScore = Double.NEGATIVE_INFINITY;
double bestSmooth_stop = 0.0;
double bestSmooth_aTW_hTWd = 0.0;
double bestSmooth_aT_hTWd = 0.0;
double bestInterp = 0.0;
System.err.println("Tuning smooth_stop...");
for (smooth_stop = 1.0/100.0; smooth_stop < 100.0; smooth_stop *= 1.25) {
double totalScore = 0.0;
for (IntDependency dep : deps) {
if (!rootTW(dep.head)) {
double stopProb = getStopProb(dep);
if (!dep.arg.equals(stopTW)) {
stopProb = 1.0 - stopProb;
}
if (stopProb > 0.0) {
totalScore += Math.log(stopProb);
}
}
}
if (totalScore > bestScore) {
bestScore = totalScore;
bestSmooth_stop = smooth_stop;
}
}
smooth_stop = bestSmooth_stop;
System.err.println("Tuning selected smooth_stop: " + smooth_stop);
for (Iterator iter = deps.iterator(); iter.hasNext(); ) {
IntDependency dep = iter.next();
if (dep.arg.equals(stopTW)) {
iter.remove();
}
}
System.err.println("Tuning other parameters...");
if ( ! useSmoothTagProjection) {
bestScore = Double.NEGATIVE_INFINITY;
for (smooth_aTW_hTWd = 0.5; smooth_aTW_hTWd < 100.0; smooth_aTW_hTWd *= 1.25) {
System.err.print(".");
for (smooth_aT_hTWd = 0.5; smooth_aT_hTWd < 100.0; smooth_aT_hTWd *= 1.25) {
for (interp = 0.02; interp < 1.0; interp += 0.02) {
double totalScore = 0.0;
for (IntDependency dep : deps) {
double score = score(dep);
if (score > Double.NEGATIVE_INFINITY) {
totalScore += score;
}
}
if (totalScore > bestScore) {
bestScore = totalScore;
bestInterp = interp;
bestSmooth_aTW_hTWd = smooth_aTW_hTWd;
bestSmooth_aT_hTWd = smooth_aT_hTWd;
System.err.println("Current best interp: " + interp + " with score " + totalScore);
}
}
}
}
smooth_aTW_hTWd = bestSmooth_aTW_hTWd;
smooth_aT_hTWd = bestSmooth_aT_hTWd;
interp = bestInterp;
} else {
// for useSmoothTagProjection
double bestSmooth_aTW_aT = 0.0;
double bestSmooth_aTW_hTd = 0.0;
double bestSmooth_aT_hTd = 0.0;
bestScore = Double.NEGATIVE_INFINITY;
for (smooth_aTW_hTWd = 1.125; smooth_aTW_hTWd < 100.0; smooth_aTW_hTWd *= 1.5) {
System.err.print("#");
for (smooth_aT_hTWd = 1.125; smooth_aT_hTWd < 100.0; smooth_aT_hTWd *= 1.5) {
System.err.print(":");
for (smooth_aTW_aT = 1.125; smooth_aTW_aT < 200.0; smooth_aTW_aT *= 1.5) {
System.err.print(".");
for (smooth_aTW_hTd = 1.125; smooth_aTW_hTd < 100.0; smooth_aTW_hTd *= 1.5) {
for (smooth_aT_hTd = 1.125; smooth_aT_hTd < 100.0; smooth_aT_hTd *= 1.5) {
for (interp = 0.2; interp <= 0.8; interp += 0.02) {
double totalScore = 0.0;
for (IntDependency dep : deps) {
double score = score(dep);
if (score > Double.NEGATIVE_INFINITY) {
totalScore += score;
}
}
if (totalScore > bestScore) {
bestScore = totalScore;
bestInterp = interp;
bestSmooth_aTW_hTWd = smooth_aTW_hTWd;
bestSmooth_aT_hTWd = smooth_aT_hTWd;
bestSmooth_aTW_aT = smooth_aTW_aT;
bestSmooth_aTW_hTd = smooth_aTW_hTd;
bestSmooth_aT_hTd = smooth_aT_hTd;
System.err.println("Current best interp: " + interp + " with score " + totalScore);
}
}
}
}
}
}
System.err.println();
}
smooth_aTW_hTWd = bestSmooth_aTW_hTWd;
smooth_aT_hTWd = bestSmooth_aT_hTWd;
smooth_aTW_aT = bestSmooth_aTW_aT;
smooth_aTW_hTd = bestSmooth_aTW_hTd;
smooth_aT_hTd = bestSmooth_aT_hTd;
interp = bestInterp;
}
System.err.println("\nTuning selected smooth_aTW_hTWd: " + smooth_aTW_hTWd + " smooth_aT_hTWd: " + smooth_aT_hTWd + " interp: " + interp + " smooth_aTW_aT: " + smooth_aTW_aT + " smooth_aTW_hTd: " + smooth_aTW_hTd + " smooth_aT_hTd: " + smooth_aT_hTd);
}
/** Add this dependency with the given count to the grammar.
* This is the main entry point of MLEDependencyGrammarExtractor.
* This is a dependency represented in the full tag space.
*/
public void addRule(IntDependency dependency, double count) {
if ( ! directional) {
dependency = new IntDependency(dependency.head, dependency.arg, false, dependency.distance);
}
if (verbose) System.err.println("Adding dep " + dependency);
// coreDependencies.incrementCount(dependency, count);
/*new IntDependency(dependency.head.word,
dependency.head.tag,
dependency.arg.word,
dependency.arg.tag,
dependency.leftHeaded,
dependency.distance), count);
*/
expandDependency(dependency, count);
// System.err.println("stopCounter: " + stopCounter);
// System.err.println("argCounter: " + argCounter);
}
/** The indices of this list are in the tag binned space. */
protected transient List tagITWList = null; //new ArrayList();
/** This maps from a tag to a cached IntTagWord that represents the
* tag by having the wildcard word ANY_WORD_INT and the tag in the
* reduced tag space.
* The argument is in terms of the full tag space; internally this
* function maps to the reduced space.
* @param tag short representation of tag in full tag space
* @return an IntTaggedWord in the reduced tag space
*/
private IntTaggedWord getCachedITW(short tag) {
// The +2 below is because -1 and -2 are used with special meanings (see IntTaggedWord).
if (tagITWList == null) {
tagITWList = new ArrayList<>(numTagBins + 2);
for (int i=0; i smoothTPIndex;
private static final String TP_PREFIX = ".*TP*.";
private short tagProject(short tag) {
if (smoothTPIndex == null) {
smoothTPIndex = new HashIndex<>(tagIndex);
}
if (tag < 0) {
return tag;
} else {
String tagStr = smoothTPIndex.get(tag);
String binStr = TP_PREFIX + smoothTP.project(tagStr);
return (short) smoothTPIndex.addToIndex(binStr);
}
}
/** Collect counts for a non-STOP dependent.
* The dependency arg is still in the full tag space.
*
* @param dependency A non-stop dependency
* @param valBinDist A binned distance
* @param count The weight with which to add this dependency
*/
private void expandArg(IntDependency dependency, short valBinDist, double count) {
IntTaggedWord headT = getCachedITW(dependency.head.tag);
IntTaggedWord argT = getCachedITW(dependency.arg.tag);
IntTaggedWord head = new IntTaggedWord(dependency.head.word, tagBin(dependency.head.tag)); //dependency.head;
IntTaggedWord arg = new IntTaggedWord(dependency.arg.word, tagBin(dependency.arg.tag)); //dependency.arg;
boolean leftHeaded = dependency.leftHeaded;
// argCounter stores stuff in both the original and the reduced tag space???
argCounter.incrementCount(intern(head, arg, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(headT, arg, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(head, argT, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(headT, argT, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(head, wildTW, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(headT, wildTW, leftHeaded, valBinDist), count);
// the WILD head stats are always directionless and not useDistance!
argCounter.incrementCount(intern(wildTW, arg, false, (short) -1), count);
argCounter.incrementCount(intern(wildTW, argT, false, (short) -1), count);
if (useSmoothTagProjection) {
// added stuff to do more smoothing. CDM Jan 2007
IntTaggedWord headP = new IntTaggedWord(dependency.head.word, tagProject(dependency.head.tag));
IntTaggedWord headTP = new IntTaggedWord(ANY_WORD_INT, tagProject(dependency.head.tag));
IntTaggedWord argP = new IntTaggedWord(dependency.arg.word, tagProject(dependency.arg.tag));
IntTaggedWord argTP = new IntTaggedWord(ANY_WORD_INT, tagProject(dependency.arg.tag));
argCounter.incrementCount(intern(headP, argP, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(headTP, argP, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(headP, argTP, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(headTP, argTP, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(headP, wildTW, leftHeaded, valBinDist), count);
argCounter.incrementCount(intern(headTP, wildTW, leftHeaded, valBinDist), count);
// the WILD head stats are always directionless and not useDistance!
argCounter.incrementCount(intern(wildTW, argP, false, (short) -1), count);
argCounter.incrementCount(intern(wildTW, argTP, false, (short) -1), count);
argCounter.incrementCount(intern(wildTW, new IntTaggedWord(dependency.head.word, ANY_TAG_INT), false, (short) -1), count);
}
numWordTokens++;
}
private void expandStop(IntDependency dependency, short distBinDist, double count, boolean wildForStop) {
IntTaggedWord headT = getCachedITW(dependency.head.tag);
IntTaggedWord head = new IntTaggedWord(dependency.head.word, tagBin(dependency.head.tag)); //dependency.head;
IntTaggedWord arg = new IntTaggedWord(dependency.arg.word, tagBin(dependency.arg.tag));//dependency.arg;
boolean leftHeaded = dependency.leftHeaded;
if (arg.word == STOP_WORD_INT) {
stopCounter.incrementCount(intern(head, arg, leftHeaded, distBinDist), count);
stopCounter.incrementCount(intern(headT, arg, leftHeaded, distBinDist), count);
}
if (wildForStop || arg.word != STOP_WORD_INT) {
stopCounter.incrementCount(intern(head, wildTW, leftHeaded, distBinDist), count);
stopCounter.incrementCount(intern(headT, wildTW, leftHeaded, distBinDist), count);
}
}
public double countHistory(IntDependency dependency) {
IntDependency temp = new IntDependency(dependency.head.word, tagBin(dependency.head.tag), wildTW.word, wildTW.tag, dependency.leftHeaded, valenceBin(dependency.distance));
return argCounter.getCount(temp);
}
/** Score a tag binned dependency. */
public double scoreTB(IntDependency dependency) {
return op.testOptions.depWeight * Math.log(probTB(dependency));
}
private static final boolean verbose = false;
protected static final double MIN_PROBABILITY = 1e-40;
/** Calculate the probability of a dependency as a real probability between
* 0 and 1 inclusive.
* @param dependency The dependency for which the probability is to be
* calculated. The tags in this dependency are in the reduced
* TagProjection space.
* @return The probability of the dependency
*/
protected double probTB(IntDependency dependency) {
if (verbose) {
// System.out.println("tagIndex: " + tagIndex);
System.err.println("Generating " + dependency);
}
boolean leftHeaded = dependency.leftHeaded && directional;
int hW = dependency.head.word;
int aW = dependency.arg.word;
short hT = dependency.head.tag;
short aT = dependency.arg.tag;
IntTaggedWord aTW = dependency.arg;
IntTaggedWord hTW = dependency.head;
boolean isRoot = rootTW(dependency.head);
double pb_stop_hTWds;
if (isRoot) {
pb_stop_hTWds = 0.0;
} else {
pb_stop_hTWds = getStopProb(dependency);
}
if (dependency.arg.word == STOP_WORD_INT) {
// did we generate stop?
return pb_stop_hTWds;
}
double pb_go_hTWds = 1.0 - pb_stop_hTWds;
// generate the argument
short binDistance = valenceBin(dependency.distance);
// KEY:
// c_ count of (read as joint count of first and second)
// p_ MLE prob of (or MAP if useSmoothTagProjection)
// pb_ MAP prob of (read as prob of first given second thing)
// a arg
// h head
// T tag
// PT projected tag
// W word
// d direction
// ds distance (implicit: there when direction is mentioned!)
IntTaggedWord anyHead = new IntTaggedWord(ANY_WORD_INT, dependency.head.tag);
IntTaggedWord anyArg = new IntTaggedWord(ANY_WORD_INT, dependency.arg.tag);
IntTaggedWord anyTagArg = new IntTaggedWord(dependency.arg.word, ANY_TAG_INT);
IntDependency temp = new IntDependency(dependency.head, dependency.arg, leftHeaded, binDistance);
double c_aTW_hTWd = argCounter.getCount(temp);
temp = new IntDependency(dependency.head, anyArg, leftHeaded, binDistance);
double c_aT_hTWd = argCounter.getCount(temp);
temp = new IntDependency(dependency.head, wildTW, leftHeaded, binDistance);
double c_hTWd = argCounter.getCount(temp);
temp = new IntDependency(anyHead, dependency.arg, leftHeaded, binDistance);
double c_aTW_hTd = argCounter.getCount(temp);
temp = new IntDependency(anyHead, anyArg, leftHeaded, binDistance);
double c_aT_hTd = argCounter.getCount(temp);
temp = new IntDependency(anyHead, wildTW, leftHeaded, binDistance);
double c_hTd = argCounter.getCount(temp);
// for smooth tag projection
short aPT = Short.MIN_VALUE;
double c_aPTW_hPTd = Double.NaN;
double c_aPT_hPTd = Double.NaN;
double c_hPTd = Double.NaN;
double c_aPTW_aPT = Double.NaN;
double c_aPT = Double.NaN;
if (useSmoothTagProjection) {
aPT = tagProject(dependency.arg.tag);
short hPT = tagProject(dependency.head.tag);
IntTaggedWord projectedArg = new IntTaggedWord(dependency.arg.word, aPT);
IntTaggedWord projectedAnyHead = new IntTaggedWord(ANY_WORD_INT, hPT);
IntTaggedWord projectedAnyArg = new IntTaggedWord(ANY_WORD_INT, aPT);
temp = new IntDependency(projectedAnyHead, projectedArg, leftHeaded, binDistance);
c_aPTW_hPTd = argCounter.getCount(temp);
temp = new IntDependency(projectedAnyHead, projectedAnyArg, leftHeaded, binDistance);
c_aPT_hPTd = argCounter.getCount(temp);
temp = new IntDependency(projectedAnyHead, wildTW, leftHeaded, binDistance);
c_hPTd = argCounter.getCount(temp);
temp = new IntDependency(wildTW, projectedArg, false, ANY_DISTANCE_INT);
c_aPTW_aPT = argCounter.getCount(temp);
temp = new IntDependency(wildTW, projectedAnyArg, false, ANY_DISTANCE_INT);
c_aPT = argCounter.getCount(temp);
}
// wild head is always directionless and no use distance
temp = new IntDependency(wildTW, dependency.arg, false, ANY_DISTANCE_INT);
double c_aTW = argCounter.getCount(temp);
temp = new IntDependency(wildTW, anyArg, false, ANY_DISTANCE_INT);
double c_aT = argCounter.getCount(temp);
temp = new IntDependency(wildTW, anyTagArg, false, ANY_DISTANCE_INT);
double c_aW = argCounter.getCount(temp);
// do the Bayesian magic
// MLE probs
double p_aTW_hTd;
double p_aT_hTd;
double p_aTW_aT;
double p_aW;
double p_aPTW_aPT;
double p_aPTW_hPTd;
double p_aPT_hPTd;
// backoffs either mle or themselves bayesian smoothed depending on useSmoothTagProjection
if (useSmoothTagProjection) {
if (useUnigramWordSmoothing) {
p_aW = c_aW > 0.0 ? (c_aW / numWordTokens) : 1.0; // NEED this 1.0 for unknown words!!!
p_aPTW_aPT = (c_aPTW_aPT + smooth_aPTW_aPT * p_aW) / (c_aPT + smooth_aPTW_aPT);
} else {
p_aPTW_aPT = c_aPTW_aPT > 0.0 ? (c_aPTW_aPT / c_aPT) : 1.0; // NEED this 1.0 for unknown words!!!
}
p_aTW_aT = (c_aTW + smooth_aTW_aT * p_aPTW_aPT) / (c_aT + smooth_aTW_aT);
p_aPTW_hPTd = c_hPTd > 0.0 ? (c_aPTW_hPTd / c_hPTd): 0.0;
p_aTW_hTd = (c_aTW_hTd + smooth_aTW_hTd * p_aPTW_hPTd) / (c_hTd + smooth_aTW_hTd);
p_aPT_hPTd = c_hPTd > 0.0 ? (c_aPT_hPTd / c_hPTd) : 0.0;
p_aT_hTd = (c_aT_hTd + smooth_aT_hTd * p_aPT_hPTd) / (c_hTd + smooth_aT_hTd);
} else {
// here word generation isn't smoothed - can't get previously unseen word with tag. Ugh.
if (op.testOptions.useLexiconToScoreDependencyPwGt) {
// We don't know the position. Now -1 means average over 0 and 1.
p_aTW_aT = dependency.leftHeaded ? Math.exp(lex.score(dependency.arg, 1, wordIndex.get(dependency.arg.word), null)): Math.exp(lex.score(dependency.arg, -1, wordIndex.get(dependency.arg.word), null));
// double oldScore = c_aTW > 0.0 ? (c_aTW / c_aT) : 1.0;
// if (oldScore == 1.0) {
// System.err.println("#### arg=" + dependency.arg + " score=" + p_aTW_aT +
// " oldScore=" + oldScore + " c_aTW=" + c_aTW + " c_aW=" + c_aW);
// }
} else {
p_aTW_aT = c_aTW > 0.0 ? (c_aTW / c_aT) : 1.0;
}
p_aTW_hTd = c_hTd > 0.0 ? (c_aTW_hTd / c_hTd) : 0.0;
p_aT_hTd = c_hTd > 0.0 ? (c_aT_hTd / c_hTd) : 0.0;
}
double pb_aTW_hTWd = (c_aTW_hTWd + smooth_aTW_hTWd * p_aTW_hTd) / (c_hTWd + smooth_aTW_hTWd);
double pb_aT_hTWd = (c_aT_hTWd + smooth_aT_hTWd * p_aT_hTd) / (c_hTWd + smooth_aT_hTWd);
double score = (interp * pb_aTW_hTWd + (1.0 - interp) * p_aTW_aT * pb_aT_hTWd) * pb_go_hTWds;
if (verbose) {
NumberFormat nf = NumberFormat.getNumberInstance();
nf.setMaximumFractionDigits(2);
if (useSmoothTagProjection) {
if (useUnigramWordSmoothing) {
System.err.println(" c_aW=" + c_aW + ", numWordTokens=" + numWordTokens + ", p(aW)=" + nf.format(p_aW));
}
System.err.println(" c_aPTW_aPT=" + c_aPTW_aPT + ", c_aPT=" + c_aPT + ", smooth_aPTW_aPT=" + smooth_aPTW_aPT + ", p(aPTW|aPT)=" + nf.format(p_aPTW_aPT));
}
System.err.println(" c_aTW=" + c_aTW + ", c_aT=" + c_aT + ", smooth_aTW_aT=" + smooth_aTW_aT +", ## p(aTW|aT)=" + nf.format(p_aTW_aT));
if (useSmoothTagProjection) {
System.err.println(" c_aPTW_hPTd=" + c_aPTW_hPTd + ", c_hPTd=" + c_hPTd + ", p(aPTW|hPTd)=" + nf.format(p_aPTW_hPTd));
}
System.err.println(" c_aTW_hTd=" + c_aTW_hTd + ", c_hTd=" + c_hTd + ", smooth_aTW_hTd=" + smooth_aTW_hTd +", p(aTW|hTd)=" + nf.format(p_aTW_hTd));
if (useSmoothTagProjection) {
System.err.println(" c_aPT_hPTd=" + c_aPT_hPTd + ", c_hPTd=" + c_hPTd + ", p(aPT|hPTd)=" + nf.format(p_aPT_hPTd));
}
System.err.println(" c_aT_hTd=" + c_aT_hTd + ", c_hTd=" + c_hTd + ", smooth_aT_hTd=" + smooth_aT_hTd +", p(aT|hTd)=" + nf.format(p_aT_hTd));
System.err.println(" c_aTW_hTWd=" + c_aTW_hTWd + ", c_hTWd=" + c_hTWd + ", smooth_aTW_hTWd=" + smooth_aTW_hTWd +", ## p(aTW|hTWd)=" + nf.format(pb_aTW_hTWd));
System.err.println(" c_aT_hTWd=" + c_aT_hTWd + ", c_hTWd=" + c_hTWd + ", smooth_aT_hTWd=" + smooth_aT_hTWd +", ## p(aT|hTWd)=" + nf.format(pb_aT_hTWd));
System.err.println(" interp=" + interp + ", prescore=" + nf.format(interp * pb_aTW_hTWd + (1.0 - interp) * p_aTW_aT * pb_aT_hTWd) +
", P(go|hTWds)=" + nf.format(pb_go_hTWds) + ", score=" + nf.format(score));
}
if (op.testOptions.prunePunc && pruneTW(aTW)) {
return 1.0;
}
if (Double.isNaN(score)) {
score = 0.0;
}
//if (op.testOptions.rightBonus && ! dependency.leftHeaded)
// score -= 0.2;
if (score < MIN_PROBABILITY) {
score = 0.0;
}
return score;
}
/** Return the probability (as a real number between 0 and 1) of stopping
* rather than generating another argument at this position.
* @param dependency The dependency used as the basis for stopping on.
* Tags are assumed to be in the TagProjection space.
* @return The probability of generating this stop probability
*/
protected double getStopProb(IntDependency dependency) {
short binDistance = distanceBin(dependency.distance);
IntTaggedWord unknownHead = new IntTaggedWord(-1, dependency.head.tag);
IntTaggedWord anyHead = new IntTaggedWord(ANY_WORD_INT, dependency.head.tag);
IntDependency temp = new IntDependency(dependency.head, stopTW, dependency.leftHeaded, binDistance);
double c_stop_hTWds = stopCounter.getCount(temp);
temp = new IntDependency(unknownHead, stopTW, dependency.leftHeaded, binDistance);
double c_stop_hTds = stopCounter.getCount(temp);
temp = new IntDependency(dependency.head, wildTW, dependency.leftHeaded, binDistance);
double c_hTWds = stopCounter.getCount(temp);
temp = new IntDependency(anyHead, wildTW, dependency.leftHeaded, binDistance);
double c_hTds = stopCounter.getCount(temp);
double p_stop_hTds = (c_hTds > 0.0 ? c_stop_hTds / c_hTds : 1.0);
double pb_stop_hTWds = (c_stop_hTWds + smooth_stop * p_stop_hTds) / (c_hTWds + smooth_stop);
if (verbose) {
System.out.println(" c_stop_hTWds: " + c_stop_hTWds + "; c_hTWds: " + c_hTWds + "; c_stop_hTds: " + c_stop_hTds + "; c_hTds: " + c_hTds);
System.out.println(" Generate STOP prob: " + pb_stop_hTWds);
}
return pb_stop_hTWds;
}
private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException {
stream.defaultReadObject();
// System.err.println("Before decompression:");
// System.err.println("arg size: " + argCounter.size() + " total: " + argCounter.totalCount());
// System.err.println("stop size: " + stopCounter.size() + " total: " + stopCounter.totalCount());
ClassicCounter compressedArgC = argCounter;
argCounter = new ClassicCounter<>();
ClassicCounter compressedStopC = stopCounter;
stopCounter = new ClassicCounter<>();
for (IntDependency d : compressedArgC.keySet()) {
double count = compressedArgC.getCount(d);
expandArg(d, d.distance, count);
}
for (IntDependency d : compressedStopC.keySet()) {
double count = compressedStopC.getCount(d);
expandStop(d, d.distance, count, false);
}
// System.err.println("After decompression:");
// System.err.println("arg size: " + argCounter.size() + " total: " + argCounter.totalCount());
// System.err.println("stop size: " + stopCounter.size() + " total: " + stopCounter.totalCount());
expandDependencyMap = null;
}
private void writeObject(ObjectOutputStream stream) throws IOException {
// System.err.println("\nBefore compression:");
// System.err.println("arg size: " + argCounter.size() + " total: " + argCounter.totalCount());
// System.err.println("stop size: " + stopCounter.size() + " total: " + stopCounter.totalCount());
ClassicCounter fullArgCounter = argCounter;
argCounter = new ClassicCounter<>();
for (IntDependency dependency : fullArgCounter.keySet()) {
if (dependency.head != wildTW && dependency.arg != wildTW &&
dependency.head.word != -1 && dependency.arg.word != -1) {
argCounter.incrementCount(dependency, fullArgCounter.getCount(dependency));
}
}
ClassicCounter fullStopCounter = stopCounter;
stopCounter = new ClassicCounter<>();
for (IntDependency dependency : fullStopCounter.keySet()) {
if (dependency.head.word != -1) {
stopCounter.incrementCount(dependency, fullStopCounter.getCount(dependency));
}
}
// System.err.println("After compression:");
// System.err.println("arg size: " + argCounter.size() + " total: " + argCounter.totalCount());
// System.err.println("stop size: " + stopCounter.size() + " total: " + stopCounter.totalCount());
stream.defaultWriteObject();
argCounter = fullArgCounter;
stopCounter = fullStopCounter;
}
/**
* Populates data in this DependencyGrammar from the character stream
* given by the Reader r.
*/
@Override
public void readData(BufferedReader in) throws IOException {
final String LEFT = "left";
int lineNum = 1;
// all lines have one rule per line
boolean doingStop = false;
for (String line = in.readLine(); line != null && line.length() > 0; line = in.readLine()) {
try {
if (line.equals("BEGIN_STOP")) {
doingStop = true;
continue;
}
String[] fields = StringUtils.splitOnCharWithQuoting(line, ' ', '\"', '\\'); // split on spaces, quote with doublequote, and escape with backslash
// System.out.println("fields:\n" + fields[0] + "\n" + fields[1] + "\n" + fields[2] + "\n" + fields[3] + "\n" + fields[4] + "\n" + fields[5]);
short distance = (short)Integer.parseInt(fields[4]);
IntTaggedWord tempHead = new IntTaggedWord(fields[0], '/', wordIndex, tagIndex);
IntTaggedWord tempArg = new IntTaggedWord(fields[2], '/', wordIndex, tagIndex);
IntDependency tempDependency = new IntDependency(tempHead, tempArg, fields[3].equals(LEFT), distance);
double count = Double.parseDouble(fields[5]);
if (doingStop) {
expandStop(tempDependency, distance, count, false);
} else {
expandArg(tempDependency, distance, count);
}
} catch (Exception e) {
IOException ioe = new IOException("Error on line " + lineNum + ": " + line);
ioe.initCause(e);
throw ioe;
}
// System.out.println("read line " + lineNum + ": " + line);
lineNum++;
}
}
/**
* Writes out data from this Object to the Writer w.
*/
@Override
public void writeData(PrintWriter out) throws IOException {
// all lines have one rule per line
for (IntDependency dependency : argCounter.keySet()) {
if (dependency.head != wildTW && dependency.arg != wildTW &&
dependency.head.word != -1 && dependency.arg.word != -1) {
double count = argCounter.getCount(dependency);
out.println(dependency.toString(wordIndex, tagIndex) + " " + count);
}
}
out.println("BEGIN_STOP");
for (IntDependency dependency : stopCounter.keySet()) {
if (dependency.head.word != -1) {
double count = stopCounter.getCount(dependency);
out.println(dependency.toString(wordIndex, tagIndex) + " " + count);
}
}
out.flush();
}
private static final long serialVersionUID = 1L;
} // end class DependencyGrammar