All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.evosuite.coverage.mutation.StrongMutationSuiteFitness Maven / Gradle / Ivy

/**
 * Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
 * contributors
 *
 * This file is part of EvoSuite.
 *
 * EvoSuite is free software: you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3.0 of the License, or
 * (at your option) any later version.
 *
 * EvoSuite is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EvoSuite. If not, see .
 */
package org.evosuite.coverage.mutation;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import org.evosuite.Properties;
import org.evosuite.testcase.ExecutableChromosome;
import org.evosuite.testcase.TestCase;
import org.evosuite.testcase.TestChromosome;
import org.evosuite.testcase.execution.ExecutionResult;
import org.evosuite.testcase.execution.ExecutionTrace;
import org.evosuite.testsuite.AbstractTestSuiteChromosome;
import org.evosuite.testsuite.TestSuiteChromosome;

/**
 * 

* StrongMutationSuiteFitness class. *

* * @author fraser */ public class StrongMutationSuiteFitness extends MutationSuiteFitness { private static final long serialVersionUID = -9124328839917834720L; public StrongMutationSuiteFitness() { super(Properties.Criterion.STRONGMUTATION); } /** {@inheritDoc} */ @Override public ExecutionResult runTest(TestCase test) { return runTest(test, null); } /** {@inheritDoc} */ @Override public ExecutionResult runTest(TestCase test, Mutation mutant) { return StrongMutationTestFitness.runTest(test, mutant); } /** * Create a list of test cases ordered by their execution time. The * precondition is that all TestChromomes have been executed such that they * have an ExecutionResult. * * @param individual * @return */ private List prioritizeTests(TestSuiteChromosome individual) { List executionOrder = new ArrayList( individual.getTestChromosomes()); Collections.sort(executionOrder, new Comparator() { @Override public int compare(TestChromosome tc1, TestChromosome tc2) { ExecutionResult result1 = tc1.getLastExecutionResult(); ExecutionResult result2 = tc2.getLastExecutionResult(); long diff = result1.getExecutionTime() - result2.getExecutionTime(); if (diff == 0) return 0; else if (diff < 0) return -1; else return 1; } }); return executionOrder; } /* (non-Javadoc) * @see org.evosuite.ga.FitnessFunction#getFitness(org.evosuite.ga.Chromosome) */ /** {@inheritDoc} */ @Override public double getFitness( AbstractTestSuiteChromosome individual) { runTestSuite(individual); // Set uncoveredMutants = MutationTestPool.getUncoveredFitnessFunctions(); TestSuiteChromosome suite = (TestSuiteChromosome) individual; for (TestChromosome test : suite.getTestChromosomes()) { ExecutionResult result = test.getLastExecutionResult(); if (result.hasTimeout() || result.hasTestException()) { logger.debug("Skipping test with timeout"); double fitness = branchFitness.totalGoals * 2 + branchFitness.totalMethods + 3 * this.numMutants; updateIndividual(this, individual, fitness); suite.setCoverage(this, 0.0); logger.info("Test case has timed out, setting fitness to max value " + fitness); return fitness; } } // First objective: achieve branch coverage logger.debug("Calculating branch fitness: "); boolean archive = Properties.TEST_ARCHIVE; Properties.TEST_ARCHIVE = false; double fitness = branchFitness.getFitness(individual); Properties.TEST_ARCHIVE = archive; Set touchedMutants = new LinkedHashSet(); Map minMutantFitness = new LinkedHashMap(); // For each mutant that is not in the archive: // 3 -> not covered // 1..2 -> infection distance // 0..1 -> propagation distance for (Integer mutantId : this.mutantMap.keySet()) { MutationTestFitness mutantFitness = mutantMap.get(mutantId); minMutantFitness.put(mutantFitness.getMutation(), 3.0); } int mutantsChecked = 0; int numKilled = removedMutants.size(); Set newKilled = new LinkedHashSet(); List executionOrder = prioritizeTests(suite); // Quicker tests first for (TestChromosome test : executionOrder) { ExecutionResult result = test.getLastExecutionResult(); // Using private reflection can lead to false positives // that represent unrealistic behaviour. Thus, we only // use reflection for basic criteria, not for mutation if(result.calledReflection()) continue; ExecutionTrace trace = result.getTrace(); touchedMutants.addAll(trace.getTouchedMutants()); logger.debug("Tests touched " + touchedMutants.size() + " mutants"); Map touchedMutantsDistances = trace.getMutationDistances(); if (touchedMutantsDistances.isEmpty()) { // if 'result' does not touch any mutant, no need to continue continue; } Iterator> it = this.mutantMap.entrySet().iterator(); while (it.hasNext()) { Entry entry = it.next(); int mutantID = entry.getKey(); if (newKilled.contains(mutantID)) { continue; } MutationTestFitness goal = entry.getValue(); if (MutationTimeoutStoppingCondition.isDisabled(goal.getMutation())) { logger.debug("Skipping timed out mutation " + goal.getMutation().getId()); continue; } mutantsChecked++; double mutantInfectionDistance = 3.0; boolean hasBeenTouched = touchedMutantsDistances.containsKey(mutantID); if (hasBeenTouched) { // Infection happened, so we need to check propagation if (touchedMutantsDistances.get(mutantID) == 0.0) { logger.debug("Executing test against mutant " + goal.getMutation()); mutantInfectionDistance = goal.getFitness(test, result); // archive is updated by the TestFitnessFunction class } else { // We can skip calling the test fitness function since we already know // fitness is 1.0 (for propagation) + infection distance mutantInfectionDistance = 1.0 + normalize(touchedMutantsDistances.get(mutantID)); } } else { mutantInfectionDistance = goal.getFitness(test, result); // archive is updated by the TestFitnessFunction class } if (mutantInfectionDistance == 0.0) { numKilled++; newKilled.add(mutantID); result.test.addCoveredGoal(goal); // update list of covered goals this.toRemoveMutants.add(mutantID); // goal to not be considered by the next iteration of the evolutionary algorithm } else { minMutantFitness.put(goal.getMutation(), Math.min(mutantInfectionDistance, minMutantFitness.get(goal.getMutation()))); } } } //logger.info("Fitness values for " + minMutantFitness.size() + " mutants"); for (Double fit : minMutantFitness.values()) { fitness += fit; } logger.debug("Mutants killed: {}, Checked: {}, Goals: {})", numKilled, mutantsChecked, this.numMutants); updateIndividual(this, individual, fitness); assert numKilled ==newKilled.size() + removedMutants.size(); assert numKilled <= this.numMutants; double coverage = (double) numKilled / (double) this.numMutants; assert coverage >= 0.0 && coverage <= 1.0; suite.setCoverage(this, coverage); suite.setNumOfCoveredGoals(this, numKilled); return fitness; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy