org.evosuite.ga.metaheuristics.mulambda.OnePlusLambdaLambdaGA Maven / Gradle / Ivy
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.ga.metaheuristics.mulambda;
import java.util.ArrayList;
import java.util.List;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.ConstructionFailedException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 1+(lambda,lambda) GA
*
* @author Yan Ge
*/
public class OnePlusLambdaLambdaGA extends AbstractMuLambda {
private static final long serialVersionUID = 529089847512798127L;
private static final Logger logger = LoggerFactory.getLogger(OnePlusLambdaLambdaGA.class);
public OnePlusLambdaLambdaGA(ChromosomeFactory factory, int lambda) {
super(factory, 1, lambda);
}
@SuppressWarnings("unchecked")
@Override
protected void evolve() {
List mutants = new ArrayList();
T parent = (T) population.get(0).clone();
while (mutants.size() < this.lambda) {
// clone firstly offspring from parent
T MutationOffspring = (T) parent.clone();
notifyMutation(MutationOffspring);
// perform mutation operation with high probability
MutationOffspring.mutate();
mutants.add(MutationOffspring);
}
// mutants are evaluated as current population so that the best mutant
// can be selected
population = mutants;
updateFitnessFunctionsAndValues();
calculateFitnessAndSortPopulation();
// obtain the best mutant
T bestMutantOffspring = getBestIndividual();
// start to execute uniform crossover operator
List crossoverOffspring = new ArrayList();
while (crossoverOffspring.size() < this.lambda) {
try {
T p1 = (T) parent.clone();
T p2 = (T) bestMutantOffspring.clone();
crossoverFunction.crossOver(p1, p2);
crossoverOffspring.add(p1);
crossoverOffspring.add(p2);
} catch (ConstructionFailedException e) {
logger.info("CrossOver failed.");
continue;
}
}
population = crossoverOffspring;
updateFitnessFunctionsAndValues();
T bestCrossoverOffspring = getBestIndividual();
T so_far_best_individual;
// compare bestCrossover offspring with parent and select the better one
if (isBetterOrEqual(bestCrossoverOffspring, parent)) {
so_far_best_individual = bestCrossoverOffspring;
} else {
so_far_best_individual = parent;
}
// compare the so_far_best_individual with best mutant, and select the better one to be the
// parent for next iteration.
if (isBetterOrEqual(so_far_best_individual, bestMutantOffspring)) {
population.set(0, so_far_best_individual);
} else {
population.set(0, bestMutantOffspring);
}
currentIteration++;
}
}