info.debatty.java.stringsimilarity.NGram Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java-string-similarity Show documentation
Show all versions of java-string-similarity Show documentation
Implementation of various string similarity and distance algorithms: Levenshtein, Jaro-winkler, n-Gram, Q-Gram, Jaccard index, Longest Common Subsequence edit distance, cosine similarity...
package info.debatty.java.stringsimilarity;
import info.debatty.java.stringsimilarity.interfaces.NormalizedStringDistance;
/**
* N-Gram Similarity as defined by Kondrak, "N-Gram Similarity and Distance",
* String Processing and Information Retrieval, Lecture Notes in Computer
* Science Volume 3772, 2005, pp 115-126.
*
* The algorithm uses affixing with special character '\n' to increase the
* weight of first characters. The normalization is achieved by dividing the
* total similarity score the original length of the longest word.
*
* http://webdocs.cs.ualberta.ca/~kondrak/papers/spire05.pdf
*/
public class NGram implements NormalizedStringDistance {
public static void main(String[] args) {
// produces 0.416666
NGram twogram = new NGram(2);
System.out.println(twogram.distance("ABCD", "ABTUIO"));
// produces 0.97222
String s1 = "Adobe CreativeSuite 5 Master Collection from cheap 4zp";
String s2 = "Adobe CreativeSuite 5 Master Collection from cheap d1x";
NGram ngram = new NGram(4);
System.out.println(ngram.distance(s1, s2));
}
private final int n;
public NGram(int n) {
this.n = n;
}
public NGram() {
this.n = 2;
}
@Override
public double distance(String s0, String s1) {
final char special = '\n';
final int sl = s0.length();
final int tl = s1.length();
if (sl == 0 || tl == 0) {
if (sl == tl) {
return 1;
} else {
return 0;
}
}
int cost = 0;
if (sl < n || tl < n) {
for (int i = 0, ni = Math.min(sl, tl); i < ni; i++) {
if (s0.charAt(i) == s1.charAt(i)) {
cost++;
}
}
return (float) cost / Math.max(sl, tl);
}
char[] sa = new char[sl + n - 1];
float p[]; //'previous' cost array, horizontally
float d[]; // cost array, horizontally
float _d[]; //placeholder to assist in swapping p and d
//construct sa with prefix
for (int i = 0; i < sa.length; i++) {
if (i < n - 1) {
sa[i] = special; //add prefix
} else {
sa[i] = s0.charAt(i - n + 1);
}
}
p = new float[sl + 1];
d = new float[sl + 1];
// indexes into strings s and t
int i; // iterates through source
int j; // iterates through target
char[] t_j = new char[n]; // jth n-gram of t
for (i = 0; i <= sl; i++) {
p[i] = i;
}
for (j = 1; j <= tl; j++) {
//construct t_j n-gram
if (j < n) {
for (int ti = 0; ti < n - j; ti++) {
t_j[ti] = special; //add prefix
}
for (int ti = n - j; ti < n; ti++) {
t_j[ti] = s1.charAt(ti - (n - j));
}
} else {
t_j = s1.substring(j - n, j).toCharArray();
}
d[0] = j;
for (i = 1; i <= sl; i++) {
cost = 0;
int tn = n;
//compare sa to t_j
for (int ni = 0; ni < n; ni++) {
if (sa[i - 1 + ni] != t_j[ni]) {
cost++;
} else if (sa[i - 1 + ni] == special) { //discount matches on prefix
tn--;
}
}
float ec = (float) cost / tn;
// minimum of cell to the left+1, to the top+1, diagonally left and up +cost
d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + ec);
}
// copy current distance counts to 'previous row' distance counts
_d = p;
p = d;
d = _d;
}
// our last action in the above loop was to switch d and p, so p now
// actually has the most recent cost counts
return 1.0 - (p[sl] / Math.max(tl, sl));
}
}