All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
io.cdap.directives.column.SplitToColumns Maven / Gradle / Ivy
/*
* Copyright © 2017-2019 Cask Data, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package io.cdap.directives.column;
import io.cdap.cdap.api.annotation.Description;
import io.cdap.cdap.api.annotation.Name;
import io.cdap.cdap.api.annotation.Plugin;
import io.cdap.wrangler.api.Arguments;
import io.cdap.wrangler.api.Directive;
import io.cdap.wrangler.api.DirectiveExecutionException;
import io.cdap.wrangler.api.DirectiveParseException;
import io.cdap.wrangler.api.ExecutorContext;
import io.cdap.wrangler.api.Row;
import io.cdap.wrangler.api.annotations.Categories;
import io.cdap.wrangler.api.lineage.Lineage;
import io.cdap.wrangler.api.lineage.Many;
import io.cdap.wrangler.api.lineage.Mutation;
import io.cdap.wrangler.api.parser.ColumnName;
import io.cdap.wrangler.api.parser.Text;
import io.cdap.wrangler.api.parser.TokenType;
import io.cdap.wrangler.api.parser.UsageDefinition;
import java.util.ArrayList;
import java.util.List;
/**
* A directive for splitting the columns into multiple columns.
*/
@Plugin(type = Directive.TYPE)
@Name(SplitToColumns.NAME)
@Categories(categories = { "column"})
@Description("Splits a column into one or more columns around matches of the specified regular expression.")
public class SplitToColumns implements Directive, Lineage {
public static final String NAME = "split-to-columns";
// Column on which to apply mask.
private String column;
// Type of mask.
private String regex;
@Override
public UsageDefinition define() {
UsageDefinition.Builder builder = UsageDefinition.builder(NAME);
builder.define("column", TokenType.COLUMN_NAME);
builder.define("regex", TokenType.TEXT);
return builder.build();
}
@Override
public void initialize(Arguments args) throws DirectiveParseException {
column = ((ColumnName) args.value("column")).value();
regex = ((Text) args.value("regex")).value();
}
@Override
public void destroy() {
// no-op
}
@Override
public List execute(List rows, ExecutorContext context) throws DirectiveExecutionException {
List results = new ArrayList<>();
for (Row row : rows) {
int idx = row.find(column);
if (idx != -1) {
Object object = row.getValue(idx);
if (object == null) {
throw new DirectiveExecutionException(
NAME, String.format("Column '%s' has null value. It should be a non-null 'String'.", column));
}
if (!(object instanceof String)) {
throw new DirectiveExecutionException(
NAME, String.format("Column '%s' has invalid type '%s'. It should be of type 'String'.",
column, object.getClass().getSimpleName()));
}
String[] lines = ((String) object).split(regex);
int i = 1;
for (String line : lines) {
row.add(String.format("%s_%d", column, i), line);
++i;
}
results.add(row);
}
}
return results;
}
@Override
public Mutation lineage() {
return Mutation.builder()
.readable("Split the column '%s' with regex '%s'", column, regex)
.relation(
column,
Many.columns(
column,
String.format("%s_%d", column, 1),
String.format("%s_%d", column, 2),
String.format("%s_%d", column, 3),
String.format("%s_%d", column, 4),
String.format("%s_%d", column, 5),
String.format("%s_%d", column, 6),
String.format("%s_%d", column, 7),
String.format("%s_%d", column, 8),
String.format("%s_%d", column, 9),
String.format("%s_%d", column, 10)))
.build();
}
}