All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.cdap.wrangler.sampling.Poisson Maven / Gradle / Ivy

There is a newer version: 4.10.1
Show newest version
/*
 * Copyright © 2017-2019 Cask Data, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

package io.cdap.wrangler.sampling;

import com.google.common.base.Preconditions;
import org.apache.commons.math3.distribution.PoissonDistribution;

import java.util.Iterator;
import java.util.Random;

/**
 * A sampler implementation based on the Poisson Distribution. While sampling elements with fraction
 * and replacement, the selected number of each element follows a given poisson distribution.
 *
 * @param  The type of sample.
 * @see
 * https://en.wikipedia.org/wiki/Poisson_distribution
 * @see
 * Gap Sampling
 */
public class Poisson extends Sampler {

  private PoissonDistribution poissonDistribution;
  private final double fraction;
  private final Random random;

  // THRESHOLD is a tuning parameter for choosing sampling method according to the fraction.
  private static final double THRESHOLD = 0.4;

  /**
   * Create a poisson sampler which can sample elements with replacement.
   *
   * @param fraction The expected count of each element.
   * @param seed     Random number generator seed for internal PoissonDistribution.
   */
  public Poisson(double fraction, long seed) {
    Preconditions.checkArgument(fraction >= 0, "fraction should be positive.");
    this.fraction = fraction;
    if (this.fraction > 0) {
      this.poissonDistribution = new PoissonDistribution(fraction);
      this.poissonDistribution.reseedRandomGenerator(seed);
    }
    this.random = new XORShiftRNG(seed);
  }

  /**
   * Create a poisson sampler which can sample elements with replacement.
   *
   * @param fraction The expected count of each element.
   */
  public Poisson(double fraction) {
    Preconditions.checkArgument(fraction >= 0, "fraction should be non-negative.");
    this.fraction = fraction;
    if (this.fraction > 0) {
      this.poissonDistribution = new PoissonDistribution(fraction);
    }
    this.random = new XORShiftRNG();
  }

  /**
   * Sample the input elements, for each input element, generate its count following a poisson
   * distribution.
   *
   * @param input Elements to be sampled.
   * @return The sampled result which is lazy computed upon input elements.
   */
  @Override
  public Iterator sample(final Iterator input) {
    if (fraction == 0) {
      return emptyIterable;
    }

    return new SamplingIterator() {
      T currentElement;
      int currentCount = 0;

      @Override
      public boolean hasNext() {
        if (currentCount > 0) {
          return true;
        } else {
          samplingProcess();
          if (currentCount > 0) {
            return true;
          } else {
            return false;
          }
        }
      }

      @Override
      public T next() {
        if (currentCount <= 0) {
          samplingProcess();
        }
        currentCount--;
        return currentElement;
      }

      public int poisson_ge1(double p) {
        // sample 'k' from Poisson(p), conditioned to k >= 1.
        double q = Math.pow(Math.E, -p);
        // simulate a poisson trial such that k >= 1.
        double t = q + (1 - q) * random.nextDouble();
        int k = 1;
        // continue standard poisson generation trials.
        t = t * random.nextDouble();
        while (t > q) {
          k++;
          t = t * random.nextDouble();
        }
        return k;
      }

      private void skipGapElements(int num) {
        // skip the elements that occurrence number is zero.
        int elementCount = 0;
        while (input.hasNext() && elementCount < num) {
          currentElement = input.next();
          elementCount++;
        }
      }

      private void samplingProcess() {
        if (fraction <= THRESHOLD) {
          double u = Math.max(random.nextDouble(), EPSILON);
          int gap = (int) (Math.log(u) / -fraction);
          skipGapElements(gap);
          if (input.hasNext()) {
            currentElement = input.next();
            currentCount = poisson_ge1(fraction);
          }
        } else {
          while (input.hasNext()) {
            currentElement = input.next();
            currentCount = poissonDistribution.sample();
            if (currentCount > 0) {
              break;
            }
          }
        }
      }
    };
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy