lphy.base.distribution.GeneralLinearModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lphy-base Show documentation
Show all versions of lphy-base Show documentation
The standard library of LPhy, which contains the required generative distributions and basic functions.
The newest version!
package lphy.base.distribution;
import lphy.base.function.GeneralLinearFunction;
import lphy.core.model.RandomVariable;
import lphy.core.model.Value;
import lphy.core.model.ValueUtils;
import lphy.core.model.annotation.GeneratorCategory;
import lphy.core.model.annotation.GeneratorInfo;
import lphy.core.model.annotation.ParameterInfo;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.apache.commons.math3.random.RandomGenerator;
import java.util.Map;
import java.util.TreeMap;
import static lphy.base.distribution.DistributionConstants.sdParamName;
/**
* General Linear Model.
* @author Alexei Drummond
*/
public class GeneralLinearModel extends ParametricDistribution {
public static final String stdevParamName = "stdev";
private Value beta;
private Value x;
private Value sd;
public GeneralLinearModel(@ParameterInfo(name = GeneralLinearFunction.betaParamName, narrativeName = "beta", description = "the coefficients of the general linear model.") Value beta,
@ParameterInfo(name = GeneralLinearFunction.xParamName, narrativeName = "x", description = "the explanatory variables of the general linear model.") Value x,
@ParameterInfo(name = sdParamName, narrativeName = "stdev", description = "the standard deviation of the general linear model.") Value sd) {
super();
this.beta = beta;
this.x = x;
this.sd = sd;
}
@Override
protected void constructDistribution(RandomGenerator random) {
}
@GeneratorInfo(name = "GLM", verbClause = "have", narrativeName = "General linear model",
category = GeneratorCategory.ALL,
description = "The general linear model.")
public RandomVariable sample() {
double mean = 0.0;
double[] b = ValueUtils.doubleArrayValue(beta);
double[] xv = ValueUtils.doubleArrayValue(x);
for (int i = 0; i < b.length; i++) {
mean += b[i] * xv[i];
}
NormalDistribution normalDistribution = new NormalDistribution(mean, ValueUtils.doubleValue(sd));
return new RandomVariable<>("y", normalDistribution.sample(), this);
}
public double density(Double[] d) {
// TODO
throw new UnsupportedOperationException("TODO");
}
@Override
public Map getParams() {
return new TreeMap<>() {{
put(GeneralLinearFunction.betaParamName, beta);
put(GeneralLinearFunction.xParamName, x);
put(sdParamName, sd);
}};
}
public void setParam(String paramName, Value value) {
if (paramName.equals(GeneralLinearFunction.betaParamName)) beta = value;
else if (paramName.equals(GeneralLinearFunction.xParamName)) x = value;
else if (paramName.equals(sdParamName)) sd = value;
else super.setParam(paramName, value);
}
}