All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.trino.operator.scalar.MathFunctions Maven / Gradle / Ivy

There is a newer version: 465
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package io.trino.operator.scalar;

import com.google.common.math.DoubleMath;
import com.google.common.math.LongMath;
import com.google.common.primitives.Doubles;
import com.google.common.primitives.Shorts;
import com.google.common.primitives.SignedBytes;
import io.airlift.slice.Slice;
import io.trino.metadata.SqlScalarFunction;
import io.trino.spi.TrinoException;
import io.trino.spi.block.Block;
import io.trino.spi.block.SqlMap;
import io.trino.spi.function.Convention;
import io.trino.spi.function.Description;
import io.trino.spi.function.LiteralParameter;
import io.trino.spi.function.LiteralParameters;
import io.trino.spi.function.OperatorDependency;
import io.trino.spi.function.ScalarFunction;
import io.trino.spi.function.SqlNullable;
import io.trino.spi.function.SqlType;
import io.trino.spi.type.Decimals;
import io.trino.spi.type.Int128;
import io.trino.spi.type.StandardTypes;
import io.trino.type.BlockTypeOperators.BlockPositionHashCode;
import io.trino.type.BlockTypeOperators.BlockPositionIsIdentical;
import io.trino.type.Constraint;
import org.apache.commons.math3.distribution.BetaDistribution;
import org.apache.commons.math3.distribution.TDistribution;
import org.apache.commons.math3.special.Erf;

import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.concurrent.ThreadLocalRandom;

import static io.airlift.slice.Slices.utf8Slice;
import static io.trino.spi.StandardErrorCode.INVALID_FUNCTION_ARGUMENT;
import static io.trino.spi.StandardErrorCode.NUMERIC_VALUE_OUT_OF_RANGE;
import static io.trino.spi.function.InvocationConvention.InvocationArgumentConvention.BLOCK_POSITION;
import static io.trino.spi.function.InvocationConvention.InvocationReturnConvention.FAIL_ON_NULL;
import static io.trino.spi.function.InvocationConvention.InvocationReturnConvention.NULLABLE_RETURN;
import static io.trino.spi.function.OperatorType.HASH_CODE;
import static io.trino.spi.function.OperatorType.IDENTICAL;
import static io.trino.spi.type.Decimals.longTenToNth;
import static io.trino.spi.type.Decimals.overflows;
import static io.trino.spi.type.DoubleType.DOUBLE;
import static io.trino.spi.type.Int128Math.add;
import static io.trino.spi.type.Int128Math.negate;
import static io.trino.spi.type.Int128Math.rescale;
import static io.trino.spi.type.Int128Math.rescaleTruncate;
import static io.trino.spi.type.Int128Math.subtract;
import static io.trino.spi.type.VarcharType.VARCHAR;
import static io.trino.type.DecimalOperators.modulusScalarFunction;
import static io.trino.util.Failures.checkCondition;
import static java.lang.Character.MAX_RADIX;
import static java.lang.Character.MIN_RADIX;
import static java.lang.Float.floatToRawIntBits;
import static java.lang.Float.intBitsToFloat;
import static java.lang.Math.toIntExact;
import static java.lang.String.format;

public final class MathFunctions
{
    public static final SqlScalarFunction DECIMAL_MOD_FUNCTION = modulusScalarFunction();

    private static final Int128[] DECIMAL_HALF_UNSCALED_FOR_SCALE;
    private static final Int128[] DECIMAL_ALMOST_HALF_UNSCALED_FOR_SCALE;

    static {
        DECIMAL_HALF_UNSCALED_FOR_SCALE = new Int128[Decimals.MAX_PRECISION];
        DECIMAL_ALMOST_HALF_UNSCALED_FOR_SCALE = new Int128[Decimals.MAX_PRECISION];
        DECIMAL_HALF_UNSCALED_FOR_SCALE[0] = Int128.ZERO;
        DECIMAL_ALMOST_HALF_UNSCALED_FOR_SCALE[0] = Int128.ZERO;
        for (int scale = 1; scale < Decimals.MAX_PRECISION; ++scale) {
            DECIMAL_HALF_UNSCALED_FOR_SCALE[scale] = Int128.valueOf(
                    BigInteger.TEN
                            .pow(scale)
                            .divide(BigInteger.valueOf(2)));
            DECIMAL_ALMOST_HALF_UNSCALED_FOR_SCALE[scale] = Int128.valueOf(
                    BigInteger.TEN
                            .pow(scale)
                            .divide(BigInteger.valueOf(2))
                            .subtract(BigInteger.ONE));
        }
    }

    private MathFunctions() {}

    @Description("Absolute value")
    @ScalarFunction("abs")
    @SqlType(StandardTypes.TINYINT)
    public static long absTinyint(@SqlType(StandardTypes.TINYINT) long num)
    {
        checkCondition(num != Byte.MIN_VALUE, NUMERIC_VALUE_OUT_OF_RANGE, "Value -128 is out of range for abs(tinyint)");
        return Math.abs(num);
    }

    @Description("Absolute value")
    @ScalarFunction("abs")
    @SqlType(StandardTypes.SMALLINT)
    public static long absSmallint(@SqlType(StandardTypes.SMALLINT) long num)
    {
        checkCondition(num != Short.MIN_VALUE, NUMERIC_VALUE_OUT_OF_RANGE, "Value -32768 is out of range for abs(smallint)");
        return Math.abs(num);
    }

    @Description("Absolute value")
    @ScalarFunction("abs")
    @SqlType(StandardTypes.INTEGER)
    public static long absInteger(@SqlType(StandardTypes.INTEGER) long num)
    {
        checkCondition(num != Integer.MIN_VALUE, NUMERIC_VALUE_OUT_OF_RANGE, "Value -2147483648 is out of range for abs(integer)");
        return Math.abs(num);
    }

    @Description("Absolute value")
    @ScalarFunction
    @SqlType(StandardTypes.BIGINT)
    public static long abs(@SqlType(StandardTypes.BIGINT) long num)
    {
        checkCondition(num != Long.MIN_VALUE, NUMERIC_VALUE_OUT_OF_RANGE, "Value -9223372036854775808 is out of range for abs(bigint)");
        return Math.abs(num);
    }

    @Description("Absolute value")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double abs(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.abs(num);
    }

    @ScalarFunction("abs")
    @Description("Absolute value")
    public static final class Abs
    {
        private Abs() {}

        @LiteralParameters({"p", "s"})
        @SqlType("decimal(p, s)")
        public static long absShort(@SqlType("decimal(p, s)") long arg)
        {
            return arg > 0 ? arg : -arg;
        }

        @LiteralParameters({"p", "s"})
        @SqlType("decimal(p, s)")
        public static Int128 absLong(@SqlType("decimal(p, s)") Int128 value)
        {
            if (value.isNegative()) {
                return negate(value);
            }
            return value;
        }
    }

    @Description("Absolute value")
    @ScalarFunction("abs")
    @SqlType(StandardTypes.REAL)
    public static long absFloat(@SqlType(StandardTypes.REAL) long num)
    {
        return floatToRawIntBits(Math.abs(intBitsToFloat((int) num)));
    }

    @Description("Arc cosine")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double acos(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.acos(num);
    }

    @Description("Arc sine")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double asin(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.asin(num);
    }

    @Description("Arc tangent")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double atan(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.atan(num);
    }

    @Description("Arc tangent of given fraction")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double atan2(@SqlType(StandardTypes.DOUBLE) double num1, @SqlType(StandardTypes.DOUBLE) double num2)
    {
        return Math.atan2(num1, num2);
    }

    @Description("Cube root")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double cbrt(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.cbrt(num);
    }

    @Description("Round up to nearest integer")
    @ScalarFunction(value = "ceiling", alias = "ceil")
    @SqlType(StandardTypes.TINYINT)
    public static long ceilingTinyint(@SqlType(StandardTypes.TINYINT) long num)
    {
        return num;
    }

    @Description("Round up to nearest integer")
    @ScalarFunction(value = "ceiling", alias = "ceil")
    @SqlType(StandardTypes.SMALLINT)
    public static long ceilingSmallint(@SqlType(StandardTypes.SMALLINT) long num)
    {
        return num;
    }

    @Description("Round up to nearest integer")
    @ScalarFunction(value = "ceiling", alias = "ceil")
    @SqlType(StandardTypes.INTEGER)
    public static long ceilingInteger(@SqlType(StandardTypes.INTEGER) long num)
    {
        return num;
    }

    @Description("Round up to nearest integer")
    @ScalarFunction(alias = "ceil")
    @SqlType(StandardTypes.BIGINT)
    public static long ceiling(@SqlType(StandardTypes.BIGINT) long num)
    {
        return num;
    }

    @Description("Round up to nearest integer")
    @ScalarFunction(alias = "ceil")
    @SqlType(StandardTypes.DOUBLE)
    public static double ceiling(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.ceil(num);
    }

    @Description("Round up to nearest integer")
    @ScalarFunction(value = "ceiling", alias = "ceil")
    @SqlType(StandardTypes.REAL)
    public static long ceilingFloat(@SqlType(StandardTypes.REAL) long num)
    {
        return floatToRawIntBits((float) ceiling(intBitsToFloat((int) num)));
    }

    @ScalarFunction(value = "ceiling", alias = "ceil")
    @Description("Round up to nearest integer")
    public static final class Ceiling
    {
        private Ceiling() {}

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "p - s + min(s, 1)")
        public static long ceilingShort(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") long num)
        {
            long rescaleFactor = Decimals.longTenToNth((int) numScale);
            long increment = (num % rescaleFactor > 0) ? 1 : 0;
            return num / rescaleFactor + increment;
        }

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "p - s + min(s, 1)")
        public static Int128 ceilingLong(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") Int128 num)
        {
            if (num.isZero()) {
                return num;
            }

            Int128 other;
            if (num.isNegative()) {
                other = DECIMAL_HALF_UNSCALED_FOR_SCALE[(int) numScale];
            }
            else {
                other = DECIMAL_ALMOST_HALF_UNSCALED_FOR_SCALE[(int) numScale];
            }

            long[] tmp = new long[2];
            add(num.getHigh(), num.getLow(), other.getHigh(), other.getLow(), tmp, 0);
            rescale(tmp[0], tmp[1], -(int) numScale, tmp, 0);
            return Int128.valueOf(tmp);
        }

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "p - s + min(s, 1)")
        public static long ceilingLongShort(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") Int128 num)
        {
            return ceilingLong(numScale, num).toLongExact();
        }
    }

    @Description("Round to integer by dropping digits after decimal point")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double truncate(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.signum(num) * Math.floor(Math.abs(num));
    }

    @Description("Round to integer by dropping digits after decimal point")
    @ScalarFunction
    @SqlType(StandardTypes.REAL)
    public static long truncate(@SqlType(StandardTypes.REAL) long num)
    {
        float numInFloat = intBitsToFloat((int) num);
        return floatToRawIntBits((float) (Math.signum(numInFloat) * Math.floor(Math.abs(numInFloat))));
    }

    @Description("Cosine")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double cos(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.cos(num);
    }

    @Description("Hyperbolic cosine")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double cosh(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.cosh(num);
    }

    @Description("Converts an angle in radians to degrees")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double degrees(@SqlType(StandardTypes.DOUBLE) double radians)
    {
        return Math.toDegrees(radians);
    }

    @Description("Euler's number")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double e()
    {
        return Math.E;
    }

    @Description("Euler's number raised to the given power")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double exp(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.exp(num);
    }

    @Description("Round down to nearest integer")
    @ScalarFunction("floor")
    @SqlType(StandardTypes.TINYINT)
    public static long floorTinyint(@SqlType(StandardTypes.TINYINT) long num)
    {
        return num;
    }

    @Description("Round down to nearest integer")
    @ScalarFunction("floor")
    @SqlType(StandardTypes.SMALLINT)
    public static long floorSmallint(@SqlType(StandardTypes.SMALLINT) long num)
    {
        return num;
    }

    @Description("Round down to nearest integer")
    @ScalarFunction("floor")
    @SqlType(StandardTypes.INTEGER)
    public static long floorInteger(@SqlType(StandardTypes.INTEGER) long num)
    {
        return num;
    }

    @Description("Round down to nearest integer")
    @ScalarFunction
    @SqlType(StandardTypes.BIGINT)
    public static long floor(@SqlType(StandardTypes.BIGINT) long num)
    {
        return num;
    }

    @Description("Round down to nearest integer")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double floor(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.floor(num);
    }

    @ScalarFunction("floor")
    @Description("Round down to nearest integer")
    public static final class Floor
    {
        private Floor() {}

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "p - s + min(s, 1)")
        public static long floorShort(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") long num)
        {
            long rescaleFactor = Decimals.longTenToNth((int) numScale);
            long increment = (num % rescaleFactor) < 0 ? -1 : 0;
            return num / rescaleFactor + increment;
        }

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "p - s + min(s, 1)")
        public static Int128 floorLong(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") Int128 num)
        {
            if (num.isZero()) {
                return num;
            }

            Int128 other;
            if (num.isNegative()) {
                other = DECIMAL_ALMOST_HALF_UNSCALED_FOR_SCALE[(int) numScale];
            }
            else {
                other = DECIMAL_HALF_UNSCALED_FOR_SCALE[(int) numScale];
            }

            long[] result = new long[2];
            subtract(num.getHigh(), num.getLow(), other.getHigh(), other.getLow(), result, 0);
            rescale(result[0], result[1], -(int) numScale, result, 0);
            return Int128.valueOf(result);
        }

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "p - s + min(s, 1)")
        public static long floorLongShort(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") Int128 num)
        {
            return floorLong(numScale, num).toLongExact();
        }
    }

    @Description("Round down to nearest integer")
    @ScalarFunction("floor")
    @SqlType(StandardTypes.REAL)
    public static long floorFloat(@SqlType(StandardTypes.REAL) long num)
    {
        return floatToRawIntBits((float) floor(intBitsToFloat((int) num)));
    }

    @Description("Natural logarithm")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double ln(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.log(num);
    }

    @Description("Logarithm to given base")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double log(@SqlType(StandardTypes.DOUBLE) double base, @SqlType(StandardTypes.DOUBLE) double number)
    {
        return Math.log(number) / Math.log(base);
    }

    @Description("Logarithm to base 2")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double log2(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.log(num) / Math.log(2);
    }

    @Description("Logarithm to base 10")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double log10(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.log10(num);
    }

    @Description("Remainder of given quotient")
    @ScalarFunction("mod")
    @SqlType(StandardTypes.TINYINT)
    public static long modTinyint(@SqlType(StandardTypes.TINYINT) long num1, @SqlType(StandardTypes.TINYINT) long num2)
    {
        return num1 % num2;
    }

    @Description("Remainder of given quotient")
    @ScalarFunction("mod")
    @SqlType(StandardTypes.SMALLINT)
    public static long modSmallint(@SqlType(StandardTypes.SMALLINT) long num1, @SqlType(StandardTypes.SMALLINT) long num2)
    {
        return num1 % num2;
    }

    @Description("Remainder of given quotient")
    @ScalarFunction("mod")
    @SqlType(StandardTypes.INTEGER)
    public static long modInteger(@SqlType(StandardTypes.INTEGER) long num1, @SqlType(StandardTypes.INTEGER) long num2)
    {
        return num1 % num2;
    }

    @Description("Remainder of given quotient")
    @ScalarFunction
    @SqlType(StandardTypes.BIGINT)
    public static long mod(@SqlType(StandardTypes.BIGINT) long num1, @SqlType(StandardTypes.BIGINT) long num2)
    {
        return num1 % num2;
    }

    @Description("Remainder of given quotient")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double mod(@SqlType(StandardTypes.DOUBLE) double num1, @SqlType(StandardTypes.DOUBLE) double num2)
    {
        return num1 % num2;
    }

    private static SqlScalarFunction decimalModFunction()
    {
        return modulusScalarFunction();
    }

    @Description("Remainder of given quotient")
    @ScalarFunction("mod")
    @SqlType(StandardTypes.REAL)
    public static long modFloat(@SqlType(StandardTypes.REAL) long num1, @SqlType(StandardTypes.REAL) long num2)
    {
        return floatToRawIntBits(intBitsToFloat((int) num1) % intBitsToFloat((int) num2));
    }

    @Description("The constant Pi")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double pi()
    {
        return Math.PI;
    }

    @Description("Value raised to the power of exponent")
    @ScalarFunction(alias = "pow")
    @SqlType(StandardTypes.DOUBLE)
    public static double power(@SqlType(StandardTypes.DOUBLE) double num, @SqlType(StandardTypes.DOUBLE) double exponent)
    {
        return Math.pow(num, exponent);
    }

    @Description("Converts an angle in degrees to radians")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double radians(@SqlType(StandardTypes.DOUBLE) double degrees)
    {
        return Math.toRadians(degrees);
    }

    @Description("A pseudo-random value")
    @ScalarFunction(alias = "rand", deterministic = false)
    @SqlType(StandardTypes.DOUBLE)
    public static double random()
    {
        return ThreadLocalRandom.current().nextDouble();
    }

    @Description("A pseudo-random number between 0 and value (exclusive)")
    @ScalarFunction(value = "random", alias = "rand", deterministic = false)
    @SqlType(StandardTypes.TINYINT)
    public static long randomTinyint(@SqlType(StandardTypes.TINYINT) long value)
    {
        checkCondition(value > 0, INVALID_FUNCTION_ARGUMENT, "bound must be positive");
        return ThreadLocalRandom.current().nextInt((int) value);
    }

    @Description("A pseudo-random number between 0 and value (exclusive)")
    @ScalarFunction(value = "random", alias = "rand", deterministic = false)
    @SqlType(StandardTypes.SMALLINT)
    public static long randomSmallint(@SqlType(StandardTypes.SMALLINT) long value)
    {
        checkCondition(value > 0, INVALID_FUNCTION_ARGUMENT, "bound must be positive");
        return ThreadLocalRandom.current().nextInt((int) value);
    }

    @Description("A pseudo-random number between 0 and value (exclusive)")
    @ScalarFunction(value = "random", alias = "rand", deterministic = false)
    @SqlType(StandardTypes.INTEGER)
    public static long randomInteger(@SqlType(StandardTypes.INTEGER) long value)
    {
        checkCondition(value > 0, INVALID_FUNCTION_ARGUMENT, "bound must be positive");
        return ThreadLocalRandom.current().nextInt((int) value);
    }

    @Description("A pseudo-random number between 0 and value (exclusive)")
    @ScalarFunction(alias = "rand", deterministic = false)
    @SqlType(StandardTypes.BIGINT)
    public static long random(@SqlType(StandardTypes.BIGINT) long value)
    {
        checkCondition(value > 0, INVALID_FUNCTION_ARGUMENT, "bound must be positive");
        return ThreadLocalRandom.current().nextLong(value);
    }

    @Description("A pseudo-random number between start and stop (exclusive)")
    @ScalarFunction(value = "random", alias = "rand", deterministic = false)
    @SqlType(StandardTypes.TINYINT)
    public static long randomTinyint(@SqlType(StandardTypes.TINYINT) long start, @SqlType(StandardTypes.TINYINT) long stop)
    {
        checkCondition(start < stop, INVALID_FUNCTION_ARGUMENT, "start value must be less than stop value");
        return ThreadLocalRandom.current().nextLong(start, stop);
    }

    @Description("A pseudo-random number between start and stop (exclusive)")
    @ScalarFunction(value = "random", alias = "rand", deterministic = false)
    @SqlType(StandardTypes.SMALLINT)
    public static long randomSmallint(@SqlType(StandardTypes.SMALLINT) long start, @SqlType(StandardTypes.SMALLINT) long stop)
    {
        checkCondition(start < stop, INVALID_FUNCTION_ARGUMENT, "start value must be less than stop value");
        return ThreadLocalRandom.current().nextInt((int) start, (int) stop);
    }

    @Description("A pseudo-random number between start and stop (exclusive)")
    @ScalarFunction(value = "random", alias = "rand", deterministic = false)
    @SqlType(StandardTypes.INTEGER)
    public static long randomInteger(@SqlType(StandardTypes.INTEGER) long start, @SqlType(StandardTypes.INTEGER) long stop)
    {
        checkCondition(start < stop, INVALID_FUNCTION_ARGUMENT, "start value must be less than stop value");
        return ThreadLocalRandom.current().nextInt((int) start, (int) stop);
    }

    @Description("A pseudo-random number between start and stop (exclusive)")
    @ScalarFunction(value = "random", alias = "rand", deterministic = false)
    @SqlType(StandardTypes.BIGINT)
    public static long random(@SqlType(StandardTypes.BIGINT) long start, @SqlType(StandardTypes.BIGINT) long stop)
    {
        checkCondition(start < stop, INVALID_FUNCTION_ARGUMENT, "start value must be less than stop value");
        return ThreadLocalRandom.current().nextLong(start, stop);
    }

    @Description("Inverse of normal cdf given a mean, std, and probability")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double inverseNormalCdf(@SqlType(StandardTypes.DOUBLE) double mean, @SqlType(StandardTypes.DOUBLE) double sd, @SqlType(StandardTypes.DOUBLE) double p)
    {
        checkCondition(p > 0 && p < 1, INVALID_FUNCTION_ARGUMENT, "p must be 0 > p > 1");
        checkCondition(sd > 0, INVALID_FUNCTION_ARGUMENT, "sd must be > 0");

        return mean + sd * 1.4142135623730951 * Erf.erfInv(2 * p - 1);
    }

    @Description("Normal cdf given a mean, standard deviation, and value")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double normalCdf(
            @SqlType(StandardTypes.DOUBLE) double mean,
            @SqlType(StandardTypes.DOUBLE) double standardDeviation,
            @SqlType(StandardTypes.DOUBLE) double value)
    {
        checkCondition(standardDeviation > 0, INVALID_FUNCTION_ARGUMENT, "standardDeviation must be > 0");
        return 0.5 * (1 + Erf.erf((value - mean) / (standardDeviation * Math.sqrt(2))));
    }

    @Description("Inverse of Beta cdf given a, b parameters and probability")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double inverseBetaCdf(
            @SqlType(StandardTypes.DOUBLE) double a,
            @SqlType(StandardTypes.DOUBLE) double b,
            @SqlType(StandardTypes.DOUBLE) double p)
    {
        checkCondition(p >= 0 && p <= 1, INVALID_FUNCTION_ARGUMENT, "p must be 0 >= p >= 1");
        checkCondition(a > 0 && b > 0, INVALID_FUNCTION_ARGUMENT, "a, b must be > 0");
        BetaDistribution distribution = new BetaDistribution(null, a, b, BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
        return distribution.inverseCumulativeProbability(p);
    }

    @Description("Beta cdf given the a, b parameters and value")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double betaCdf(
            @SqlType(StandardTypes.DOUBLE) double a,
            @SqlType(StandardTypes.DOUBLE) double b,
            @SqlType(StandardTypes.DOUBLE) double value)
    {
        checkCondition(value >= 0 && value <= 1, INVALID_FUNCTION_ARGUMENT, "value must be 0 >= v >= 1");
        checkCondition(a > 0 && b > 0, INVALID_FUNCTION_ARGUMENT, "a, b must be > 0");
        BetaDistribution distribution = new BetaDistribution(null, a, b, BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
        return distribution.cumulativeProbability(value);
    }

    @Description("Student's t-distribution cumulative density function given the x and degrees of freedom")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double tCdf(
            @SqlType(StandardTypes.DOUBLE) double x,
            @SqlType(StandardTypes.DOUBLE) double degreesOfFreedom)
    {
        if (degreesOfFreedom < 1) {
            throw new TrinoException(INVALID_FUNCTION_ARGUMENT, "degrees of freedom must be greater than or equal to 1");
        }
        return new TDistribution(degreesOfFreedom).cumulativeProbability(x);
    }

    @Description("Student's t-distribution given the x and degrees of freedom")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double tPdf(
            @SqlType(StandardTypes.DOUBLE) double x,
            @SqlType(StandardTypes.DOUBLE) double degreesOfFreedom)
    {
        if (degreesOfFreedom < 1) {
            throw new TrinoException(INVALID_FUNCTION_ARGUMENT, "degrees of freedom must be greater than or equal to 1");
        }
        return new TDistribution(degreesOfFreedom).density(x);
    }

    @Description("Round to nearest integer")
    @ScalarFunction("round")
    @SqlType(StandardTypes.TINYINT)
    public static long roundTinyint(@SqlType(StandardTypes.TINYINT) long num)
    {
        return num;
    }

    @Description("Round to nearest integer")
    @ScalarFunction("round")
    @SqlType(StandardTypes.SMALLINT)
    public static long roundSmallint(@SqlType(StandardTypes.SMALLINT) long num)
    {
        return num;
    }

    @Description("Round to nearest integer")
    @ScalarFunction("round")
    @SqlType(StandardTypes.INTEGER)
    public static long roundInteger(@SqlType(StandardTypes.INTEGER) long num)
    {
        return num;
    }

    @Description("Round to nearest integer")
    @ScalarFunction
    @SqlType(StandardTypes.BIGINT)
    public static long round(@SqlType(StandardTypes.BIGINT) long num)
    {
        return num;
    }

    @Description("Round to nearest integer")
    @ScalarFunction("round")
    @SqlType(StandardTypes.TINYINT)
    public static long roundTinyint(@SqlType(StandardTypes.TINYINT) long num, @SqlType(StandardTypes.INTEGER) long decimals)
    {
        long rounded = roundLong(num, decimals);
        try {
            return SignedBytes.checkedCast(rounded);
        }
        catch (IllegalArgumentException e) {
            throw new TrinoException(NUMERIC_VALUE_OUT_OF_RANGE, "Out of range for tinyint: " + rounded, e);
        }
    }

    @Description("Round to nearest integer")
    @ScalarFunction("round")
    @SqlType(StandardTypes.SMALLINT)
    public static long roundSmallint(@SqlType(StandardTypes.SMALLINT) long num, @SqlType(StandardTypes.INTEGER) long decimals)
    {
        long rounded = roundLong(num, decimals);
        try {
            return Shorts.checkedCast(rounded);
        }
        catch (IllegalArgumentException e) {
            throw new TrinoException(NUMERIC_VALUE_OUT_OF_RANGE, "Out of range for smallint: " + rounded, e);
        }
    }

    @Description("Round to nearest integer")
    @ScalarFunction("round")
    @SqlType(StandardTypes.INTEGER)
    public static long roundInteger(@SqlType(StandardTypes.INTEGER) long num, @SqlType(StandardTypes.INTEGER) long decimals)
    {
        long rounded = roundLong(num, decimals);
        try {
            return toIntExact(rounded);
        }
        catch (IllegalArgumentException e) {
            throw new TrinoException(NUMERIC_VALUE_OUT_OF_RANGE, "Out of range for integer: " + rounded, e);
        }
    }

    @Description("Round to nearest integer")
    @ScalarFunction
    @SqlType(StandardTypes.BIGINT)
    public static long round(@SqlType(StandardTypes.BIGINT) long num, @SqlType(StandardTypes.INTEGER) long decimals)
    {
        return roundLong(num, decimals);
    }

    private static long roundLong(long num, long decimals)
    {
        if (decimals >= 0) {
            return num;
        }

        try {
            long factor = LongMath.checkedPow(10, toIntExact(-decimals));
            return Math.multiplyExact(LongMath.divide(num, factor, RoundingMode.HALF_UP), factor);
        }
        catch (ArithmeticException e) {
            throw new TrinoException(NUMERIC_VALUE_OUT_OF_RANGE, "numerical overflow: " + num, e);
        }
    }

    @Description("Round to nearest integer")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double round(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return round(num, 0);
    }

    @Description("Round to given number of decimal places")
    @ScalarFunction("round")
    @SqlType(StandardTypes.REAL)
    public static long roundReal(@SqlType(StandardTypes.REAL) long num)
    {
        return roundReal(num, 0);
    }

    @Description("Round to given number of decimal places")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double round(@SqlType(StandardTypes.DOUBLE) double num, @SqlType(StandardTypes.INTEGER) long decimals)
    {
        if (Double.isNaN(num) || Double.isInfinite(num)) {
            return num;
        }

        double factor = Math.pow(10, decimals);
        int sign = (num < 0) ? -1 : 1;
        double rescaled = sign * num * factor;
        long rescaledRound = Math.round(rescaled);
        if (rescaledRound != Long.MAX_VALUE) {
            return sign * (rescaledRound / factor);
        }
        if (Double.isInfinite(rescaled)) {
            // num has max 17 precisions, so to make round actually do something, decimals must be smaller than 17.
            // then factor must be smaller than 10^17
            // then in order for rescaled to be greater than Double.MAX_VALUE, num must be greater than 1.8E291 with many trailing zeros
            // in which case, rounding is no op anyway
            return num;
        }
        return sign * DoubleMath.roundToBigInteger(rescaled, RoundingMode.HALF_UP).doubleValue() / factor;
    }

    @Description("Round to given number of decimal places")
    @ScalarFunction("round")
    @SqlType(StandardTypes.REAL)
    public static long roundReal(@SqlType(StandardTypes.REAL) long num, @SqlType(StandardTypes.INTEGER) long decimals)
    {
        float numInFloat = intBitsToFloat((int) num);
        if (Float.isNaN(numInFloat) || Float.isInfinite(numInFloat)) {
            return num;
        }

        double factor = Math.pow(10, decimals);
        int sign = (numInFloat < 0) ? -1 : 1;
        double result;
        double rescaled = sign * numInFloat * factor;
        long rescaledRound = Math.round(rescaled);
        if (rescaledRound != Long.MAX_VALUE) {
            result = sign * (rescaledRound / factor);
        }
        else if (Double.isInfinite(rescaled)) {
            // numInFloat is max at 3.4028235e+38f, to make rescale greater than Double.MAX_VALUE, decimals must be greater than 270
            // but numInFloat has max 8 precision, so rounding is no op
            return num;
        }
        else {
            result = sign * (DoubleMath.roundToBigInteger(rescaled, RoundingMode.HALF_UP).doubleValue() / factor);
        }
        @SuppressWarnings("NumericCastThatLosesPrecision")
        float resultAsFloat = (float) result;
        return floatToRawIntBits(resultAsFloat);
    }

    @ScalarFunction("round")
    @Description("Round to nearest integer")
    public static final class Round
    {
        private Round() {}

        @LiteralParameters({"p", "s", "rp", "rs"})
        @SqlType("decimal(rp, rs)")
        @Constraint(variable = "rp", expression = "min(38, p - s + min(1, s))")
        @Constraint(variable = "rs", expression = "0")
        public static long roundShort(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") long num)
        {
            if (num == 0) {
                return 0;
            }
            if (numScale == 0) {
                return num;
            }
            if (num < 0) {
                return -roundShort(numScale, -num);
            }

            long rescaleFactor = Decimals.longTenToNth((int) numScale);
            long remainder = num % rescaleFactor;
            long remainderBoundary = rescaleFactor / 2;
            int roundUp = remainder >= remainderBoundary ? 1 : 0;
            return num / rescaleFactor + roundUp;
        }

        @LiteralParameters({"p", "s", "rp", "rs"})
        @SqlType("decimal(rp, rs)")
        @Constraint(variable = "rp", expression = "min(38, p - s + min(1, s))")
        @Constraint(variable = "rs", expression = "0")
        public static Int128 roundLongLong(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") Int128 num)
        {
            if (numScale == 0) {
                return num;
            }
            return rescale(num, -(int) numScale);
        }

        @LiteralParameters({"p", "s", "rp", "rs"})
        @SqlType("decimal(rp, rs)")
        @Constraint(variable = "rp", expression = "min(38, p - s + min(1, s))")
        @Constraint(variable = "rs", expression = "0")
        public static long roundLongShort(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") Int128 num)
        {
            Int128 decimal = rescale(num, -(int) numScale);
            return decimal.toLongExact();
        }
    }

    @ScalarFunction("round")
    @Description("Round to given number of decimal places")
    public static final class RoundN
    {
        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp, s)")
        @Constraint(variable = "rp", expression = "min(38, p + 1)")
        public static long roundNShort(
                @LiteralParameter("p") long numPrecision,
                @LiteralParameter("s") long numScale,
                @SqlType("decimal(p, s)") long num,
                @SqlType(StandardTypes.INTEGER) long decimals)
        {
            if (num == 0 || numPrecision - numScale + decimals < 0) {
                return 0;
            }
            if (decimals >= numScale) {
                return num;
            }
            if (num < 0) {
                return -roundNShort(numPrecision, numScale, -num, decimals);
            }

            long rescaleFactor = longTenToNth((int) (numScale - decimals));
            long remainder = num % rescaleFactor;
            int roundUp = (remainder >= rescaleFactor / 2) ? 1 : 0;
            return (num / rescaleFactor + roundUp) * rescaleFactor;
        }

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp, s)")
        @Constraint(variable = "rp", expression = "min(38, p + 1)")
        public static Int128 roundNLong(
                @LiteralParameter("s") long numScale,
                @LiteralParameter("rp") long resultPrecision,
                @SqlType("decimal(p, s)") Int128 num,
                @SqlType(StandardTypes.INTEGER) long decimals)
        {
            if (decimals >= numScale) {
                return num;
            }
            int rescaleFactor = ((int) numScale) - (int) decimals;
            try {
                Int128 result = rescale(rescale(num, -rescaleFactor), rescaleFactor);

                if (overflows(result, (int) resultPrecision)) {
                    throw new TrinoException(NUMERIC_VALUE_OUT_OF_RANGE, "decimal overflow: " + num);
                }

                return result;
            }
            catch (ArithmeticException e) {
                throw new TrinoException(NUMERIC_VALUE_OUT_OF_RANGE, "decimal overflow: " + num, e);
            }
        }

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp, s)")
        @Constraint(variable = "rp", expression = "min(38, p + 1)")
        public static Int128 roundNShortLong(
                @LiteralParameter("s") long numScale,
                @LiteralParameter("rp") long resultPrecision,
                @SqlType("decimal(p, s)") long num,
                @SqlType(StandardTypes.INTEGER) long decimals)
        {
            return roundNLong(numScale, resultPrecision, Int128.valueOf(num), decimals);
        }
    }

    @ScalarFunction("truncate")
    @Description("Round to integer by dropping digits after decimal point")
    public static final class Truncate
    {
        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "max(1, p - s)")
        public static long truncateShort(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") long num)
        {
            if (num == 0) {
                return 0;
            }
            if (numScale == 0) {
                return num;
            }

            long rescaleFactor = Decimals.longTenToNth((int) numScale);
            return num / rescaleFactor;
        }

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "max(1, p - s)")
        public static Int128 truncateLong(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") Int128 num)
        {
            if (numScale == 0) {
                return num;
            }
            return rescaleTruncate(num, -(int) numScale);
        }

        @LiteralParameters({"p", "s", "rp"})
        @SqlType("decimal(rp,0)")
        @Constraint(variable = "rp", expression = "max(1, p - s)")
        public static long truncateLongShort(@LiteralParameter("s") long numScale, @SqlType("decimal(p, s)") Int128 num)
        {
            Int128 decimal = rescaleTruncate(num, -(int) numScale);
            return decimal.toLongExact();
        }
    }

    @ScalarFunction("truncate")
    @Description("Round to integer by dropping given number of digits after decimal point")
    public static final class TruncateN
    {
        private TruncateN() {}

        @LiteralParameters({"p", "s"})
        @SqlType("decimal(p, s)")
        public static long truncateShort(
                @LiteralParameter("p") long numPrecision,
                @LiteralParameter("s") long numScale,
                @SqlType("decimal(p, s)") long num,
                @SqlType(StandardTypes.INTEGER) long roundScale)
        {
            if (num == 0 || numPrecision - numScale + roundScale <= 0) {
                return 0;
            }
            if (roundScale >= numScale) {
                return num;
            }

            long rescaleFactor = longTenToNth((int) (numScale - roundScale));
            long remainder = num % rescaleFactor;
            return num - remainder;
        }

        @LiteralParameters({"p", "s"})
        @SqlType("decimal(p, s)")
        public static Int128 truncateLong(
                @LiteralParameter("p") long numPrecision,
                @LiteralParameter("s") long numScale,
                @SqlType("decimal(p, s)") Int128 num,
                @SqlType(StandardTypes.INTEGER) long roundScale)
        {
            if (numPrecision - numScale + roundScale <= 0) {
                return Int128.ZERO;
            }
            if (roundScale >= numScale) {
                return num;
            }
            int rescaleFactor = (int) (numScale - roundScale);
            return rescaleTruncate(rescaleTruncate(num, -rescaleFactor), rescaleFactor);
        }
    }

    @Description("Signum")
    @ScalarFunction("sign")
    public static final class Sign
    {
        private Sign() {}

        @LiteralParameters({"p", "s"})
        @SqlType("decimal(1,0)")
        public static long signDecimalShort(@SqlType("decimal(p, s)") long num)
        {
            return (long) Math.signum(num);
        }

        @LiteralParameters({"p", "s"})
        @SqlType("decimal(1,0)")
        public static long signDecimalLong(@SqlType("decimal(p, s)") Int128 num)
        {
            int result = Long.signum(num.getHigh());

            if (result != 0) {
                return result;
            }

            return num.getLow() == 0 ? 0 : 1;
        }
    }

    @ScalarFunction
    @SqlType(StandardTypes.BIGINT)
    public static long sign(@SqlType(StandardTypes.BIGINT) long num)
    {
        return (long) Math.signum(num);
    }

    @Description("Signum")
    @ScalarFunction("sign")
    @SqlType(StandardTypes.INTEGER)
    public static long signInteger(@SqlType(StandardTypes.INTEGER) long num)
    {
        return (long) Math.signum(num);
    }

    @Description("Signum")
    @ScalarFunction("sign")
    @SqlType(StandardTypes.SMALLINT)
    public static long signSmallint(@SqlType(StandardTypes.SMALLINT) long num)
    {
        return (long) Math.signum(num);
    }

    @Description("Signum")
    @ScalarFunction("sign")
    @SqlType(StandardTypes.TINYINT)
    public static long signTinyint(@SqlType(StandardTypes.TINYINT) long num)
    {
        return (long) Math.signum(num);
    }

    @Description("Signum")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double sign(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.signum(num);
    }

    @Description("Signum")
    @ScalarFunction("sign")
    @SqlType(StandardTypes.REAL)
    public static long signFloat(@SqlType(StandardTypes.REAL) long num)
    {
        return floatToRawIntBits(Math.signum(intBitsToFloat((int) num)));
    }

    @Description("Sine")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double sin(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.sin(num);
    }

    @Description("Hyperbolic sine")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double sinh(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.sinh(num);
    }

    @Description("Square root")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double sqrt(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.sqrt(num);
    }

    @Description("Tangent")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double tan(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.tan(num);
    }

    @Description("Hyperbolic tangent")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double tanh(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Math.tanh(num);
    }

    @Description("Test if value is not-a-number")
    @ScalarFunction("is_nan")
    @SqlType(StandardTypes.BOOLEAN)
    public static boolean isNaN(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Double.isNaN(num);
    }

    @Description("Test if value is not-a-number")
    @ScalarFunction("is_nan")
    @SqlType(StandardTypes.BOOLEAN)
    public static boolean isNaNReal(@SqlType(StandardTypes.REAL) long value)
    {
        float floatValue = intBitsToFloat(toIntExact(value));
        return Float.isNaN(floatValue);
    }

    @Description("Test if value is finite")
    @ScalarFunction
    @SqlType(StandardTypes.BOOLEAN)
    public static boolean isFinite(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Doubles.isFinite(num);
    }

    @Description("Test if value is infinite")
    @ScalarFunction
    @SqlType(StandardTypes.BOOLEAN)
    public static boolean isInfinite(@SqlType(StandardTypes.DOUBLE) double num)
    {
        return Double.isInfinite(num);
    }

    @Description("Constant representing not-a-number")
    @ScalarFunction("nan")
    @SqlType(StandardTypes.DOUBLE)
    public static double nan()
    {
        return Double.NaN;
    }

    @Description("Infinity")
    @ScalarFunction
    @SqlType(StandardTypes.DOUBLE)
    public static double infinity()
    {
        return Double.POSITIVE_INFINITY;
    }

    @Description("Convert a number to a string in the given base")
    @ScalarFunction
    @SqlType("varchar(64)")
    public static Slice toBase(@SqlType(StandardTypes.BIGINT) long value, @SqlType(StandardTypes.BIGINT) long radix)
    {
        checkRadix(radix);
        return utf8Slice(Long.toString(value, (int) radix));
    }

    @Description("Convert a string in the given base to a number")
    @ScalarFunction
    @LiteralParameters("x")
    @SqlType(StandardTypes.BIGINT)
    public static long fromBase(@SqlType("varchar(x)") Slice value, @SqlType(StandardTypes.BIGINT) long radix)
    {
        checkRadix(radix);
        try {
            return Long.parseLong(value.toStringUtf8(), (int) radix);
        }
        catch (NumberFormatException e) {
            throw new TrinoException(INVALID_FUNCTION_ARGUMENT, format("Not a valid base-%d number: %s", radix, value.toStringUtf8()), e);
        }
    }

    private static void checkRadix(long radix)
    {
        checkCondition(radix >= MIN_RADIX && radix <= MAX_RADIX,
                INVALID_FUNCTION_ARGUMENT, "Radix must be between %d and %d", MIN_RADIX, MAX_RADIX);
    }

    @Description("The bucket number of a value given a lower and upper bound and the number of buckets")
    @ScalarFunction("width_bucket")
    @SqlType(StandardTypes.BIGINT)
    public static long widthBucket(@SqlType(StandardTypes.DOUBLE) double operand, @SqlType(StandardTypes.DOUBLE) double bound1, @SqlType(StandardTypes.DOUBLE) double bound2, @SqlType(StandardTypes.BIGINT) long bucketCount)
    {
        checkCondition(bucketCount > 0, INVALID_FUNCTION_ARGUMENT, "bucketCount must be greater than 0");
        checkCondition(!isNaN(operand), INVALID_FUNCTION_ARGUMENT, "operand must not be NaN");
        checkCondition(isFinite(bound1), INVALID_FUNCTION_ARGUMENT, "first bound must be finite");
        checkCondition(isFinite(bound2), INVALID_FUNCTION_ARGUMENT, "second bound must be finite");
        checkCondition(bound1 != bound2, INVALID_FUNCTION_ARGUMENT, "bounds cannot equal each other");

        long result;

        double lower = Math.min(bound1, bound2);
        double upper = Math.max(bound1, bound2);

        if (operand < lower) {
            result = 0;
        }
        else if (operand >= upper) {
            try {
                result = Math.addExact(bucketCount, 1);
            }
            catch (ArithmeticException e) {
                throw new TrinoException(NUMERIC_VALUE_OUT_OF_RANGE, format("Bucket for value %s is out of range", operand));
            }
        }
        else {
            result = (long) ((double) bucketCount * (operand - lower) / (upper - lower) + 1);
        }

        if (bound1 > bound2) {
            result = (bucketCount - result) + 1;
        }

        return result;
    }

    @Description("The bucket number of a value given an array of bins")
    @ScalarFunction("width_bucket")
    @SqlType(StandardTypes.BIGINT)
    public static long widthBucket(@SqlType(StandardTypes.DOUBLE) double operand, @SqlType("array(double)") Block bins)
    {
        int numberOfBins = bins.getPositionCount();

        checkCondition(numberOfBins > 0, INVALID_FUNCTION_ARGUMENT, "Bins cannot be an empty array");
        checkCondition(!isNaN(operand), INVALID_FUNCTION_ARGUMENT, "Operand cannot be NaN");

        int lower = 0;
        int upper = numberOfBins;

        int index;
        double bin;

        while (lower < upper) {
            if (DOUBLE.getDouble(bins, lower) > DOUBLE.getDouble(bins, upper - 1)) {
                throw new TrinoException(INVALID_FUNCTION_ARGUMENT, "Bin values are not sorted in ascending order");
            }

            index = (lower + upper) / 2;
            bin = DOUBLE.getDouble(bins, index);

            if (!isFinite(bin)) {
                throw new TrinoException(INVALID_FUNCTION_ARGUMENT, "Bin value must be finite, got " + bin);
            }

            if (operand < bin) {
                upper = index;
            }
            else {
                lower = index + 1;
            }
        }

        return lower;
    }

    @Description("Cosine similarity between the given sparse vectors")
    @ScalarFunction
    @SqlNullable
    @SqlType(StandardTypes.DOUBLE)
    public static Double cosineSimilarity(
            @OperatorDependency(
                    operator = IDENTICAL,
                    argumentTypes = {"varchar", "varchar"},
                    convention = @Convention(arguments = {BLOCK_POSITION, BLOCK_POSITION}, result = NULLABLE_RETURN)) BlockPositionIsIdentical varcharIdentical,
            @OperatorDependency(
                    operator = HASH_CODE,
                    argumentTypes = "varchar",
                    convention = @Convention(arguments = BLOCK_POSITION, result = FAIL_ON_NULL)) BlockPositionHashCode varcharHashCode,
            @SqlType("map(varchar,double)") SqlMap leftMap,
            @SqlType("map(varchar,double)") SqlMap rightMap)
    {
        Double normLeftMap = mapL2Norm(leftMap);
        Double normRightMap = mapL2Norm(rightMap);

        if (normLeftMap == null || normRightMap == null) {
            return null;
        }

        double dotProduct = mapDotProduct(varcharIdentical, varcharHashCode, leftMap, rightMap);

        return dotProduct / (normLeftMap * normRightMap);
    }

    private static double mapDotProduct(BlockPositionIsIdentical varcharIdentical, BlockPositionHashCode varcharHashCode, SqlMap leftMap, SqlMap rightMap)
    {
        int leftRawOffset = leftMap.getRawOffset();
        Block leftRawKeyBlock = leftMap.getRawKeyBlock();
        Block leftRawValueBlock = leftMap.getRawValueBlock();
        int rightRawOffset = rightMap.getRawOffset();
        Block rightRawKeyBlock = rightMap.getRawKeyBlock();
        Block rightRawValueBlock = rightMap.getRawValueBlock();

        BlockSet rightMapKeys = new BlockSet(VARCHAR, varcharIdentical, varcharHashCode, rightMap.getSize());

        for (int i = 0; i < rightMap.getSize(); i++) {
            rightMapKeys.add(rightRawKeyBlock, rightRawOffset + i);
        }

        double result = 0.0;

        for (int leftIndex = 0; leftIndex < leftMap.getSize(); leftIndex++) {
            int rightIndex = rightMapKeys.positionOf(leftRawKeyBlock, leftRawOffset + leftIndex);

            if (rightIndex != -1) {
                result += DOUBLE.getDouble(leftRawValueBlock, leftRawOffset + leftIndex) *
                        DOUBLE.getDouble(rightRawValueBlock, rightRawOffset + rightIndex);
            }
        }

        return result;
    }

    private static Double mapL2Norm(SqlMap map)
    {
        int rawOffset = map.getRawOffset();
        Block rawValueBlock = map.getRawValueBlock();

        double norm = 0.0;

        for (int i = 0; i < map.getSize(); i++) {
            if (rawValueBlock.isNull(rawOffset + i)) {
                return null;
            }
            norm += DOUBLE.getDouble(rawValueBlock, rawOffset + i) * DOUBLE.getDouble(rawValueBlock, rawOffset + i);
        }

        return Math.sqrt(norm);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy