All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.chars.CharArrays Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/* Copyright (C) 1991-2016 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   .  */
/* This header is separate from features.h so that the compiler can
   include it implicitly at the start of every compilation.  It must
   not itself include  or any other header that includes
    because the implicit include comes before any feature
   test macros that may be defined in a source file before it first
   explicitly includes a system header.  GCC knows the name of this
   header in order to preinclude it.  */
/* glibc's intent is to support the IEC 559 math functionality, real
   and complex.  If the GCC (4.9 and later) predefined macros
   specifying compiler intent are available, use them to determine
   whether the overall intent is to support these features; otherwise,
   presume an older compiler has intent to support these features and
   define these macros by default.  */
/* wchar_t uses Unicode 9.0.0.  Version 9.0 of the Unicode Standard is
   synchronized with ISO/IEC 10646:2014, fourth edition, plus
   Amd. 1  and Amd. 2 and 273 characters from forthcoming  10646, fifth edition.
   (Amd. 2 was published 2016-05-01,
   see https://www.iso.org/obp/ui/#iso:std:iso-iec:10646:ed-4:v1:amd:2:v1:en) */
/* We do not support C11 .  */
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 *
 *
 *
 * For the sorting and binary search code:
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty. 
 */
package it.unimi.dsi.fastutil.chars;

import it.unimi.dsi.fastutil.Arrays;
import it.unimi.dsi.fastutil.Hash;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
import it.unimi.dsi.fastutil.ints.IntArrays;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * A class providing static methods and objects that do useful things with
 * type-specific arrays.
 *
 * 

* In particular, the ensureCapacity(), grow(), * trim() and setLength() methods allow to handle * arrays much like array lists. This can be very useful when efficiency (or * syntactic simplicity) reasons make array lists unsuitable. * *

* Note that {@link it.unimi.dsi.fastutil.io.BinIO} and * {@link it.unimi.dsi.fastutil.io.TextIO} contain several methods make it * possible to load and save arrays of primitive types as sequences of elements * in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of * lines of text. * *

Sorting

* *

* There are several sorting methods available. The main theme is that of * letting you choose the sorting algorithm you prefer (i.e., trading stability * of mergesort for no memory allocation in quicksort). Several algorithms * provide a parallel version, that will use the * {@linkplain Runtime#availableProcessors() number of cores available}. Some * algorithms also provide an explicit indirect sorting facility, which * makes it possible to sort an array using the values in another array as * comparator. * *

* All comparison-based algorithm have an implementation based on a * type-specific comparator. * *

* As a general rule, sequential radix sort is significantly faster than * quicksort or mergesort, in particular on random-looking data. In the parallel * case, up to a few cores parallel radix sort is still the fastest, but at some * point quicksort exploits parallelism better. * *

* If you are fine with not knowing exactly which algorithm will be run (in * particular, not knowing exactly whether a support array will be allocated), * the dual-pivot parallel sorts in {@link java.util.Arrays} are about 50% * faster than the classical single-pivot implementation used here. * *

* In any case, if sorting time is important I suggest that you benchmark your * sorting load with your data distribution and on your architecture. * * @see java.util.Arrays */ public class CharArrays { private CharArrays() { } /** A static, final, empty array. */ public final static char[] EMPTY_ARRAY = {}; /** * Ensures that an array can contain the given number of entries. * *

* If you cannot foresee whether this array will need again to be enlarged, * you should probably use grow() instead. * * @param array * an array. * @param length * the new minimum length for this array. * @return array, if it contains length entries or * more; otherwise, an array with length entries whose * first array.length entries are the same as those of * array. */ public static char[] ensureCapacity(final char[] array, final int length) { if (length > array.length) { final char t[] = new char[length]; System.arraycopy(array, 0, t, 0, array.length); return t; } return array; } /** * Ensures that an array can contain the given number of entries, preserving * just a part of the array. * * @param array * an array. * @param length * the new minimum length for this array. * @param preserve * the number of elements of the array that must be preserved in * case a new allocation is necessary. * @return array, if it can contain length entries * or more; otherwise, an array with length entries * whose first preserve entries are the same as those * of array. */ public static char[] ensureCapacity(final char[] array, final int length, final int preserve) { if (length > array.length) { final char t[] = new char[length]; System.arraycopy(array, 0, t, 0, preserve); return t; } return array; } /** * Grows the given array to the maximum between the given length and the * current length multiplied by two, provided that the given length is * larger than the current length. * *

* If you want complete control on the array growth, you should probably use * ensureCapacity() instead. * * @param array * an array. * @param length * the new minimum length for this array. * @return array, if it can contain length * entries; otherwise, an array with * max(length,array.length/φ) entries * whose first array.length entries are the same as * those of array. */ public static char[] grow(final char[] array, final int length) { if (length > array.length) { final int newLength = (int) Math.max(Math.min(2L * array.length, Arrays.MAX_ARRAY_SIZE), length); final char t[] = new char[newLength]; System.arraycopy(array, 0, t, 0, array.length); return t; } return array; } /** * Grows the given array to the maximum between the given length and the * current length multiplied by two, provided that the given length is * larger than the current length, preserving just a part of the array. * *

* If you want complete control on the array growth, you should probably use * ensureCapacity() instead. * * @param array * an array. * @param length * the new minimum length for this array. * @param preserve * the number of elements of the array that must be preserved in * case a new allocation is necessary. * @return array, if it can contain length * entries; otherwise, an array with * max(length,array.length/φ) entries * whose first preserve entries are the same as those * of array. */ public static char[] grow(final char[] array, final int length, final int preserve) { if (length > array.length) { final int newLength = (int) Math.max(Math.min(2L * array.length, Arrays.MAX_ARRAY_SIZE), length); final char t[] = new char[newLength]; System.arraycopy(array, 0, t, 0, preserve); return t; } return array; } /** * Trims the given array to the given length. * * @param array * an array. * @param length * the new maximum length for the array. * @return array, if it contains length entries or * less; otherwise, an array with length entries whose * entries are the same as the first length entries of * array. * */ public static char[] trim(final char[] array, final int length) { if (length >= array.length) return array; final char t[] = length == 0 ? EMPTY_ARRAY : new char[length]; System.arraycopy(array, 0, t, 0, length); return t; } /** * Sets the length of the given array. * * @param array * an array. * @param length * the new length for the array. * @return array, if it contains exactly length * entries; otherwise, if it contains more than * length entries, an array with length * entries whose entries are the same as the first * length entries of array; otherwise, an * array with length entries whose first * array.length entries are the same as those of * array. * */ public static char[] setLength(final char[] array, final int length) { if (length == array.length) return array; if (length < array.length) return trim(array, length); return ensureCapacity(array, length); } /** * Returns a copy of a portion of an array. * * @param array * an array. * @param offset * the first element to copy. * @param length * the number of elements to copy. * @return a new array containing length elements of * array starting at offset. */ public static char[] copy(final char[] array, final int offset, final int length) { ensureOffsetLength(array, offset, length); final char[] a = length == 0 ? EMPTY_ARRAY : new char[length]; System.arraycopy(array, offset, a, 0, length); return a; } /** * Returns a copy of an array. * * @param array * an array. * @return a copy of array. */ public static char[] copy(final char[] array) { return array.clone(); } /** * Fills the given array with the given value. * * @param array * an array. * @param value * the new value for all elements of the array. * @deprecated Please use the corresponding {@link java.util.Arrays} method. */ @Deprecated public static void fill(final char[] array, final char value) { int i = array.length; while (i-- != 0) array[i] = value; } /** * Fills a portion of the given array with the given value. * * @param array * an array. * @param from * the starting index of the portion to fill (inclusive). * @param to * the end index of the portion to fill (exclusive). * @param value * the new value for all elements of the specified portion of the * array. * @deprecated Please use the corresponding {@link java.util.Arrays} method. */ @Deprecated public static void fill(final char[] array, final int from, int to, final char value) { ensureFromTo(array, from, to); if (from == 0) while (to-- != 0) array[to] = value; else for (int i = from; i < to; i++) array[i] = value; } /** * Returns true if the two arrays are elementwise equal. * * @param a1 * an array. * @param a2 * another array. * @return true if the two arrays are of the same length, and their elements * are equal. * @deprecated Please use the corresponding {@link java.util.Arrays} method, * which is intrinsified in recent JVMs. */ @Deprecated public static boolean equals(final char[] a1, final char a2[]) { int i = a1.length; if (i != a2.length) return false; while (i-- != 0) if (!((a1[i]) == (a2[i]))) return false; return true; } /** * Ensures that a range given by its first (inclusive) and last (exclusive) * elements fits an array. * *

* This method may be used whenever an array range check is needed. * * @param a * an array. * @param from * a start index (inclusive). * @param to * an end index (exclusive). * @throws IllegalArgumentException * if from is greater than to. * @throws ArrayIndexOutOfBoundsException * if from or to are greater than the * array length or negative. */ public static void ensureFromTo(final char[] a, final int from, final int to) { Arrays.ensureFromTo(a.length, from, to); } /** * Ensures that a range given by an offset and a length fits an array. * *

* This method may be used whenever an array range check is needed. * * @param a * an array. * @param offset * a start index. * @param length * a length (the number of elements in the range). * @throws IllegalArgumentException * if length is negative. * @throws ArrayIndexOutOfBoundsException * if offset is negative or * offset+length is greater than the * array length. */ public static void ensureOffsetLength(final char[] a, final int offset, final int length) { Arrays.ensureOffsetLength(a.length, offset, length); } /** * Ensures that two arrays are of the same length. * * @param a * an array. * @param b * another array. * @throws IllegalArgumentException * if the two argument arrays are not of the same length. */ public static void ensureSameLength(final char[] a, final char[] b) { if (a.length != b.length) throw new IllegalArgumentException("Array size mismatch: " + a.length + " != " + b.length); } private static final int QUICKSORT_NO_REC = 16; private static final int PARALLEL_QUICKSORT_NO_FORK = 8192; private static final int QUICKSORT_MEDIAN_OF_9 = 128; private static final int MERGESORT_NO_REC = 16; /** * Swaps two elements of an anrray. * * @param x * an array. * @param a * a position in {@code x}. * @param b * another position in {@code x}. */ public static void swap(final char x[], final int a, final int b) { final char t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps two sequences of elements of an array. * * @param x * an array. * @param a * a position in {@code x}. * @param b * another position in {@code x}. * @param n * the number of elements to exchange starting at {@code a} and * {@code b}. */ public static void swap(final char[] x, int a, int b, final int n) { for (int i = 0; i < n; i++, a++, b++) swap(x, a, b); } private static int med3(final char x[], final int a, final int b, final int c, CharComparator comp) { final int ab = comp.compare(x[a], x[b]); final int ac = comp.compare(x[a], x[c]); final int bc = comp.compare(x[b], x[c]); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final char[] a, final int from, final int to, final CharComparator comp) { for (int i = from; i < to - 1; i++) { int m = i; for (int j = i + 1; j < to; j++) if (comp.compare(a[j], a[m]) < 0) m = j; if (m != i) { final char u = a[i]; a[i] = a[m]; a[m] = u; } } } private static void insertionSort(final char[] a, final int from, final int to, final CharComparator comp) { for (int i = from; ++i < to;) { char t = a[i]; int j = i; for (char u = a[j - 1]; comp.compare(t, u) < 0; u = a[--j - 1]) { a[j] = u; if (from == j - 1) { --j; break; } } a[j] = t; } } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. * */ public static void quickSort(final char[] x, final int from, final int to, final CharComparator comp) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to, comp); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); } m = med3(x, l, m, n, comp); // Mid-size, med of 3 final char v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s, comp); if ((s = d - c) > 1) quickSort(x, to - s, to, comp); } /** * Sorts an array according to the order induced by the specified comparator * using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x * the array to be sorted. * @param comp * the comparator to determine the sorting order. * */ public static void quickSort(final char[] x, final CharComparator comp) { quickSort(x, 0, x.length, comp); } protected static class ForkJoinQuickSortComp extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final char[] x; private final CharComparator comp; public ForkJoinQuickSortComp(final char[] x, final int from, final int to, final CharComparator comp) { this.from = from; this.to = to; this.x = x; this.comp = comp; } @Override protected void compute() { final char[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to, comp); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); m = med3(x, l, m, n, comp); final char v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortComp(x, from, from + s, comp), new ForkJoinQuickSortComp(x, to - t, to, comp)); else if (s > 1) invokeAll(new ForkJoinQuickSortComp(x, from, from + s, comp)); else invokeAll(new ForkJoinQuickSortComp(x, to - t, to, comp)); } } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void parallelQuickSort(final char[] x, final int from, final int to, final CharComparator comp) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, from, to, comp); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinQuickSortComp(x, from, to, comp)); pool.shutdown(); } } /** * Sorts an array according to the order induced by the specified comparator * using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the array to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void parallelQuickSort(final char[] x, final CharComparator comp) { parallelQuickSort(x, 0, x.length, comp); } private static int med3(final char x[], final int a, final int b, final int c) { final int ab = (Character.compare((x[a]), (x[b]))); final int ac = (Character.compare((x[a]), (x[c]))); final int bc = (Character.compare((x[b]), (x[c]))); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final char[] a, final int from, final int to) { for (int i = from; i < to - 1; i++) { int m = i; for (int j = i + 1; j < to; j++) if (((a[j]) < (a[m]))) m = j; if (m != i) { final char u = a[i]; a[i] = a[m]; a[m] = u; } } } private static void insertionSort(final char[] a, final int from, final int to) { for (int i = from; ++i < to;) { char t = a[i]; int j = i; for (char u = a[j - 1]; ((t) < (u)); u = a[--j - 1]) { a[j] = u; if (from == j - 1) { --j; break; } } a[j] = t; } } /** * Sorts the specified range of elements according to the natural ascending * order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void quickSort(final char[] x, final int from, final int to) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 final char v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (Character.compare((x[b]), (v)))) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = (Character.compare((x[c]), (v)))) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s); if ((s = d - c) > 1) quickSort(x, to - s, to); } /** * Sorts an array according to the natural ascending order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x * the array to be sorted. * */ public static void quickSort(final char[] x) { quickSort(x, 0, x.length); } protected static class ForkJoinQuickSort extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final char[] x; public ForkJoinQuickSort(final char[] x, final int from, final int to) { this.from = from; this.to = to; this.x = x; } @Override protected void compute() { final char[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); m = med3(x, l, m, n); final char v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (Character.compare((x[b]), (v)))) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = (Character.compare((x[c]), (v)))) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort(x, from, from + s), new ForkJoinQuickSort(x, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSort(x, from, from + s)); else invokeAll(new ForkJoinQuickSort(x, to - t, to)); } } /** * Sorts the specified range of elements according to the natural ascending * order using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelQuickSort(final char[] x, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, from, to); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinQuickSort(x, from, to)); pool.shutdown(); } } /** * Sorts an array according to the natural ascending order using a parallel * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the array to be sorted. * */ public static void parallelQuickSort(final char[] x) { parallelQuickSort(x, 0, x.length); } private static int med3Indirect(final int perm[], final char x[], final int a, final int b, final int c) { final char aa = x[perm[a]]; final char bb = x[perm[b]]; final char cc = x[perm[c]]; final int ab = (Character.compare((aa), (bb))); final int ac = (Character.compare((aa), (cc))); final int bc = (Character.compare((bb), (cc))); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void insertionSortIndirect(final int[] perm, final char[] a, final int from, final int to) { for (int i = from; ++i < to;) { int t = perm[i]; int j = i; for (int u = perm[j - 1]; ((a[t]) < (a[u])); u = perm[--j - 1]) { perm[j] = u; if (from == j - 1) { --j; break; } } perm[j] = t; } } /** * Sorts the specified range of elements according to the natural ascending * order using indirect quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param perm * a permutation array indexing {@code x}. * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void quickSortIndirect(final int[] perm, final char[] x, final int from, final int to) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { insertionSortIndirect(perm, x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3Indirect(perm, x, l, l + s, l + 2 * s); m = med3Indirect(perm, x, m - s, m, m + s); n = med3Indirect(perm, x, n - 2 * s, n - s, n); } m = med3Indirect(perm, x, l, m, n); // Mid-size, med of 3 final char v = x[perm[m]]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (Character.compare((x[perm[b]]), (v)))) <= 0) { if (comparison == 0) IntArrays.swap(perm, a++, b); b++; } while (c >= b && (comparison = (Character.compare((x[perm[c]]), (v)))) >= 0) { if (comparison == 0) IntArrays.swap(perm, c, d--); c--; } if (b > c) break; IntArrays.swap(perm, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); IntArrays.swap(perm, from, b - s, s); s = Math.min(d - c, to - d - 1); IntArrays.swap(perm, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSortIndirect(perm, x, from, from + s); if ((s = d - c) > 1) quickSortIndirect(perm, x, to - s, to); } /** * Sorts an array according to the natural ascending order using indirect * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

* Note that this implementation does not allocate any object, contrarily to * the implementation used to sort primitive types in * {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param perm * a permutation array indexing {@code x}. * @param x * the array to be sorted. */ public static void quickSortIndirect(final int perm[], final char[] x) { quickSortIndirect(perm, x, 0, x.length); } protected static class ForkJoinQuickSortIndirect extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final int[] perm; private final char[] x; public ForkJoinQuickSortIndirect(final int perm[], final char[] x, final int from, final int to) { this.from = from; this.to = to; this.x = x; this.perm = perm; } @Override protected void compute() { final char[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSortIndirect(perm, x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3Indirect(perm, x, l, l + s, l + 2 * s); m = med3Indirect(perm, x, m - s, m, m + s); n = med3Indirect(perm, x, n - 2 * s, n - s, n); m = med3Indirect(perm, x, l, m, n); final char v = x[perm[m]]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (Character.compare((x[perm[b]]), (v)))) <= 0) { if (comparison == 0) IntArrays.swap(perm, a++, b); b++; } while (c >= b && (comparison = (Character.compare((x[perm[c]]), (v)))) >= 0) { if (comparison == 0) IntArrays.swap(perm, c, d--); c--; } if (b > c) break; IntArrays.swap(perm, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); IntArrays.swap(perm, from, b - s, s); s = Math.min(d - c, to - d - 1); IntArrays.swap(perm, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortIndirect(perm, x, from, from + s), new ForkJoinQuickSortIndirect(perm, x, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSortIndirect(perm, x, from, from + s)); else invokeAll(new ForkJoinQuickSortIndirect(perm, x, to - t, to)); } } /** * Sorts the specified range of elements according to the natural ascending * order using a parallel indirect quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param perm * a permutation array indexing {@code x}. * @param x * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelQuickSortIndirect(final int[] perm, final char[] x, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSortIndirect(perm, x, from, to); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinQuickSortIndirect(perm, x, from, to)); pool.shutdown(); } } /** * Sorts an array according to the natural ascending order using a parallel * indirect quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param perm * a permutation array indexing {@code x}. * @param x * the array to be sorted. * */ public static void parallelQuickSortIndirect(final int perm[], final char[] x) { parallelQuickSortIndirect(perm, x, 0, x.length); } /** * Stabilizes a permutation. * *

* This method can be used to stabilize the permutation generated by an * indirect sorting, assuming that initially the permutation array was in * ascending order (e.g., the identity, as usually happens). This method * scans the permutation, and for each non-singleton block of elements with * the same associated values in {@code x}, permutes them in ascending * order. The resulting permutation corresponds to a stable sort. * *

* Usually combining an unstable indirect sort and this method is more * efficient than using a stable sort, as most stable sort algorithms * require a support array. * *

* More precisely, assuming that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ], after stabilization * we will also have that x[ perm[ i ] ] = x[ perm[ i + 1 ] ] * implies perm[ i ] ≤ perm[ i + 1 ]. * * @param perm * a permutation array indexing {@code x} so that it is sorted. * @param x * the sorted array to be stabilized. * @param from * the index of the first element (inclusive) to be stabilized. * @param to * the index of the last element (exclusive) to be stabilized. */ public static void stabilize(final int perm[], final char[] x, final int from, final int to) { int curr = from; for (int i = from + 1; i < to; i++) { if (x[perm[i]] != x[perm[curr]]) { if (i - curr > 1) IntArrays.parallelQuickSort(perm, curr, i); curr = i; } } if (to - curr > 1) IntArrays.parallelQuickSort(perm, curr, to); } /** * Stabilizes a permutation. * *

* This method can be used to stabilize the permutation generated by an * indirect sorting, assuming that initially the permutation array was in * ascending order (e.g., the identity, as usually happens). This method * scans the permutation, and for each non-singleton block of elements with * the same associated values in {@code x}, permutes them in ascending * order. The resulting permutation corresponds to a stable sort. * *

* Usually combining an unstable indirect sort and this method is more * efficient than using a stable sort, as most stable sort algorithms * require a support array. * *

* More precisely, assuming that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ], after stabilization * we will also have that x[ perm[ i ] ] = x[ perm[ i + 1 ] ] * implies perm[ i ] ≤ perm[ i + 1 ]. * * @param perm * a permutation array indexing {@code x} so that it is sorted. * @param x * the sorted array to be stabilized. */ public static void stabilize(final int perm[], final char[] x) { stabilize(perm, x, 0, perm.length); } private static int med3(final char x[], final char[] y, final int a, final int b, final int c) { int t; final int ab = (t = (Character.compare((x[a]), (x[b])))) == 0 ? (Character.compare((y[a]), (y[b]))) : t; final int ac = (t = (Character.compare((x[a]), (x[c])))) == 0 ? (Character.compare((y[a]), (y[c]))) : t; final int bc = (t = (Character.compare((x[b]), (x[c])))) == 0 ? (Character.compare((y[b]), (y[c]))) : t; return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void swap(final char x[], final char[] y, final int a, final int b) { final char t = x[a]; final char u = y[a]; x[a] = x[b]; y[a] = y[b]; x[b] = t; y[b] = u; } private static void swap(final char[] x, final char[] y, int a, int b, final int n) { for (int i = 0; i < n; i++, a++, b++) swap(x, y, a, b); } private static void selectionSort(final char[] a, final char[] b, final int from, final int to) { for (int i = from; i < to - 1; i++) { int m = i, u; for (int j = i + 1; j < to; j++) if ((u = (Character.compare((a[j]), (a[m])))) < 0 || u == 0 && ((b[j]) < (b[m]))) m = j; if (m != i) { char t = a[i]; a[i] = a[m]; a[m] = t; t = b[i]; b[i] = b[m]; b[m] = t; } } } /** * Sorts the specified range of elements of two arrays according to the * natural lexicographical ascending order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * * @param x * the first array to be sorted. * @param y * the second array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void quickSort(final char[] x, final char[] y, final int from, final int to) { final int len = to - from; if (len < QUICKSORT_NO_REC) { selectionSort(x, y, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, y, l, l + s, l + 2 * s); m = med3(x, y, m - s, m, m + s); n = med3(x, y, n - 2 * s, n - s, n); } m = med3(x, y, l, m, n); // Mid-size, med of 3 final char v = x[m], w = y[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison, t; while (b <= c && (comparison = (t = (Character.compare((x[b]), (v)))) == 0 ? (Character.compare((y[b]), (w))) : t) <= 0) { if (comparison == 0) swap(x, y, a++, b); b++; } while (c >= b && (comparison = (t = (Character.compare((x[c]), (v)))) == 0 ? (Character.compare((y[c]), (w))) : t) >= 0) { if (comparison == 0) swap(x, y, c, d--); c--; } if (b > c) break; swap(x, y, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, y, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, y, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, y, from, from + s); if ((s = d - c) > 1) quickSort(x, y, to - s, to); } /** * Sorts two arrays according to the natural lexicographical ascending order * using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * * @param x * the first array to be sorted. * @param y * the second array to be sorted. */ public static void quickSort(final char[] x, final char[] y) { ensureSameLength(x, y); quickSort(x, y, 0, x.length); } protected static class ForkJoinQuickSort2 extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final char[] x, y; public ForkJoinQuickSort2(final char[] x, final char[] y, final int from, final int to) { this.from = from; this.to = to; this.x = x; this.y = y; } @Override protected void compute() { final char[] x = this.x; final char[] y = this.y; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, y, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, y, l, l + s, l + 2 * s); m = med3(x, y, m - s, m, m + s); n = med3(x, y, n - 2 * s, n - s, n); m = med3(x, y, l, m, n); final char v = x[m], w = y[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison, t; while (b <= c && (comparison = (t = (Character.compare((x[b]), (v)))) == 0 ? (Character.compare((y[b]), (w))) : t) <= 0) { if (comparison == 0) swap(x, y, a++, b); b++; } while (c >= b && (comparison = (t = (Character.compare((x[c]), (v)))) == 0 ? (Character.compare((y[c]), (w))) : t) >= 0) { if (comparison == 0) swap(x, y, c, d--); c--; } if (b > c) break; swap(x, y, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, y, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, y, b, to - s, s); s = b - a; t = d - c; // Recursively sort non-partition-elements if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort2(x, y, from, from + s), new ForkJoinQuickSort2(x, y, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSort2(x, y, from, from + s)); else invokeAll(new ForkJoinQuickSort2(x, y, to - t, to)); } } /** * Sorts the specified range of elements of two arrays according to the * natural lexicographical ascending order using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the first array to be sorted. * @param y * the second array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelQuickSort(final char[] x, final char[] y, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, y, from, to); final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinQuickSort2(x, y, from, to)); pool.shutdown(); } /** * Sorts two arrays according to the natural lexicographical ascending order * using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * *

* This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x * the first array to be sorted. * @param y * the second array to be sorted. */ public static void parallelQuickSort(final char[] x, final char[] y) { ensureSameLength(x, y); parallelQuickSort(x, y, 0, x.length); } /** * Sorts the specified range of elements according to the natural ascending * order using mergesort, using a given pre-filled support array. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. Moreover, no support arrays will be * allocated. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param supp * a support array containing at least to elements, * and whose entries are identical to those of {@code a} in the * specified range. */ public static void mergeSort(final char a[], final int from, final int to, final char supp[]) { int len = to - from; // Insertion sort on smallest arrays if (len < MERGESORT_NO_REC) { insertionSort(a, from, to); return; } // Recursively sort halves of a into supp final int mid = (from + to) >>> 1; mergeSort(supp, from, mid, a); mergeSort(supp, mid, to, a); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if (((supp[mid - 1]) <= (supp[mid]))) { System.arraycopy(supp, from, a, from, len); return; } // Merge sorted halves (now in supp) into a for (int i = from, p = from, q = mid; i < to; i++) { if (q >= to || p < mid && ((supp[p]) <= (supp[q]))) a[i] = supp[p++]; else a[i] = supp[q++]; } } /** * Sorts the specified range of elements according to the natural ascending * order using mergesort. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. An array as large as a * will be allocated by this method. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void mergeSort(final char a[], final int from, final int to) { mergeSort(a, from, to, a.clone()); } /** * Sorts an array according to the natural ascending order using mergesort. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. An array as large as a * will be allocated by this method. * * @param a * the array to be sorted. */ public static void mergeSort(final char a[]) { mergeSort(a, 0, a.length); } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using mergesort, using a given pre-filled * support array. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. Moreover, no support arrays will be * allocated. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. * @param supp * a support array containing at least to elements, * and whose entries are identical to those of {@code a} in the * specified range. */ public static void mergeSort(final char a[], final int from, final int to, CharComparator comp, final char supp[]) { int len = to - from; // Insertion sort on smallest arrays if (len < MERGESORT_NO_REC) { insertionSort(a, from, to, comp); return; } // Recursively sort halves of a into supp final int mid = (from + to) >>> 1; mergeSort(supp, from, mid, comp, a); mergeSort(supp, mid, to, comp, a); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if (comp.compare(supp[mid - 1], supp[mid]) <= 0) { System.arraycopy(supp, from, a, from, len); return; } // Merge sorted halves (now in supp) into a for (int i = from, p = from, q = mid; i < to; i++) { if (q >= to || p < mid && comp.compare(supp[p], supp[q]) <= 0) a[i] = supp[p++]; else a[i] = supp[q++]; } } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using mergesort. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. An array as large as a * will be allocated by this method. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void mergeSort(final char a[], final int from, final int to, CharComparator comp) { mergeSort(a, from, to, comp, a.clone()); } /** * Sorts an array according to the order induced by the specified comparator * using mergesort. * *

* This sort is guaranteed to be stable: equal elements will not be * reordered as a result of the sort. An array as large as a * will be allocated by this method. * * @param a * the array to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void mergeSort(final char a[], CharComparator comp) { mergeSort(a, 0, a.length, comp); } /** * Searches a range of the specified array for the specified value using the * binary search algorithm. The range must be sorted prior to making this * call. If it is not sorted, the results are undefined. If the range * contains multiple elements with the specified value, there is no * guarantee which one will be found. * * @param a * the array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note that * this guarantees that the return value will be ≥ 0 if and only * if the key is found. * @see java.util.Arrays */ public static int binarySearch(final char[] a, int from, int to, final char key) { char midVal; to--; while (from <= to) { final int mid = (from + to) >>> 1; midVal = a[mid]; if (midVal < key) from = mid + 1; else if (midVal > key) to = mid - 1; else return mid; } return -(from + 1); } /** * Searches an array for the specified value using the binary search * algorithm. The range must be sorted prior to making this call. If it is * not sorted, the results are undefined. If the range contains multiple * elements with the specified value, there is no guarantee which one will * be found. * * @param a * the array to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note that * this guarantees that the return value will be ≥ 0 if and only * if the key is found. * @see java.util.Arrays */ public static int binarySearch(final char[] a, final char key) { return binarySearch(a, 0, a.length, key); } /** * Searches a range of the specified array for the specified value using the * binary search algorithm and a specified comparator. The range must be * sorted following the comparator prior to making this call. If it is not * sorted, the results are undefined. If the range contains multiple * elements with the specified value, there is no guarantee which one will * be found. * * @param a * the array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note that * this guarantees that the return value will be ≥ 0 if and only * if the key is found. * @see java.util.Arrays */ public static int binarySearch(final char[] a, int from, int to, final char key, final CharComparator c) { char midVal; to--; while (from <= to) { final int mid = (from + to) >>> 1; midVal = a[mid]; final int cmp = c.compare(midVal, key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -(from + 1); } /** * Searches an array for the specified value using the binary search * algorithm and a specified comparator. The range must be sorted following * the comparator prior to making this call. If it is not sorted, the * results are undefined. If the range contains multiple elements with the * specified value, there is no guarantee which one will be found. * * @param a * the array to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note that * this guarantees that the return value will be ≥ 0 if and only * if the key is found. * @see java.util.Arrays */ public static int binarySearch(final char[] a, final char key, final CharComparator c) { return binarySearch(a, 0, a.length, key, c); } /** The size of a digit used during radix sort (must be a power of 2). */ private static final int DIGIT_BITS = 8; /** The mask to extract a digit of {@link #DIGIT_BITS} bits. */ private static final int DIGIT_MASK = (1 << DIGIT_BITS) - 1; /** The number of digits per element. */ private static final int DIGITS_PER_ELEMENT = Character.SIZE / DIGIT_BITS; private static final int RADIXSORT_NO_REC = 1024; private static final int PARALLEL_RADIXSORT_NO_FORK = 1024; /** * This method fixes negative numbers so that the combination * exponent/significand is lexicographically sorted. */ /** * Sorts the specified array using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This implementation is significantly faster than quicksort already at * small sizes (say, more than 10000 elements), but it can only sort in * ascending order. * * @param a * the array to be sorted. */ public static void radixSort(final char[] a) { radixSort(a, 0, a.length); } /** * Sorts the specified range of an array using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This implementation is significantly faster than quicksort already at * small sizes (say, more than 10000 elements), but it can only sort in * ascending order. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final char[] a, final int from, final int to) { if (to - from < RADIXSORT_NO_REC) { quickSort(a, from, to); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; while (stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; final int signMask = 0; final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (int i = first + length; i-- != first;) count[((a[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; // i moves through the start of each block for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { char t = a[i]; c = ((t) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is // necessarily OK. while ((d = --pos[c]) > i) { final char z = t; t = a[d]; a[d] = z; c = ((t) >>> shift & DIGIT_MASK ^ signMask); } a[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) quickSort(a, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } protected final static class Segment { protected final int offset, length, level; protected Segment(final int offset, final int length, final int level) { this.offset = offset; this.length = length; this.level = level; } @Override public String toString() { return "Segment [offset=" + offset + ", length=" + length + ", level=" + level + "]"; } } protected final static Segment POISON_PILL = new Segment(-1, -1, -1); /** * Sorts the specified range of an array using parallel radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This implementation uses a pool of {@link Runtime#availableProcessors()} * threads. * * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelRadixSort(final char[] a, final int from, final int to) { if (to - from < PARALLEL_RADIXSORT_NO_FORK) { quickSort(a, from, to); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue(); queue.add(new Segment(from, to - from, 0)); final AtomicInteger queueSize = new AtomicInteger(1); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads, Executors.defaultThreadFactory()); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService(executorService); for (int i = numberOfThreads; i-- != 0;) executorCompletionService.submit(new Callable() { public Void call() throws Exception { final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; for (;;) { if (queueSize.get() == 0) for (int i = numberOfThreads; i-- != 0;) queue.add(POISON_PILL); final Segment segment = queue.take(); if (segment == POISON_PILL) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; final int signMask = 0; final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (int i = first + length; i-- != first;) count[((a[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; // i moves through the start of each block for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { char t = a[i]; c = ((t) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { while ((d = --pos[c]) > i) { final char z = t; t = a[d]; a[d] = z; c = ((t) >>> shift & DIGIT_MASK ^ signMask); } a[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < PARALLEL_RADIXSORT_NO_FORK) quickSort(a, i, i + count[c]); else { queueSize.incrementAndGet(); queue.add(new Segment(i, count[c], level + 1)); } } } queueSize.decrementAndGet(); } } }); Throwable problem = null; for (int i = numberOfThreads; i-- != 0;) try { executorCompletionService.take().get(); } catch (Exception e) { problem = e.getCause(); // We keep only the last one. They will // be logged anyway. } executorService.shutdown(); if (problem != null) throw (problem instanceof RuntimeException) ? (RuntimeException) problem : new RuntimeException(problem); } /** * Sorts the specified array using parallel radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This implementation uses a pool of {@link Runtime#availableProcessors()} * threads. * * @param a * the array to be sorted. */ public static void parallelRadixSort(final char[] a) { parallelRadixSort(a, 0, a.length); } /** * Sorts the specified array using indirect radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

* This implementation will allocate, in the stable case, a support array as * large as perm (note that the stable version is slightly * faster). * * @param perm * a permutation array indexing a. * @param a * the array to be sorted. * @param stable * whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final int[] perm, final char[] a, final boolean stable) { radixSortIndirect(perm, a, 0, perm.length, stable); } /** * Sorts the specified array using indirect radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

* This implementation will allocate, in the stable case, a support array as * large as perm (note that the stable version is slightly * faster). * * @param perm * a permutation array indexing a. * @param a * the array to be sorted. * @param from * the index of the first element of perm * (inclusive) to be permuted. * @param to * the index of the last element of perm (exclusive) * to be permuted. * @param stable * whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final int[] perm, final char[] a, final int from, final int to, final boolean stable) { if (to - from < RADIXSORT_NO_REC) { insertionSortIndirect(perm, a, from, to); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; final int[] support = stable ? new int[perm.length] : null; while (stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; final int signMask = 0; final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (int i = first + length; i-- != first;) count[((a[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = stable ? 0 : first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } if (stable) { for (int i = first + length; i-- != first;) support[--pos[((a[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]] = perm[i]; System.arraycopy(support, 0, perm, first, length); for (int i = 0, p = first; i <= lastUsed; i++) { if (level < maxLevel && count[i] > 1) { if (count[i] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, p, p + count[i]); else { offsetStack[stackPos] = p; lengthStack[stackPos] = count[i]; levelStack[stackPos++] = level + 1; } } p += count[i]; } java.util.Arrays.fill(count, 0); } else { final int end = first + length - count[lastUsed]; // i moves through the start of each block for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { int t = perm[i]; c = ((a[t]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is // necessarily OK. while ((d = --pos[c]) > i) { final int z = t; t = perm[d]; perm[d] = z; c = ((a[t]) >>> shift & DIGIT_MASK ^ signMask); } perm[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } } /** * Sorts the specified range of an array using parallel indirect radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

* This implementation uses a pool of {@link Runtime#availableProcessors()} * threads. * * @param perm * a permutation array indexing a. * @param a * the array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param stable * whether the sorting algorithm should be stable. */ public static void parallelRadixSortIndirect(final int perm[], final char[] a, final int from, final int to, final boolean stable) { if (to - from < PARALLEL_RADIXSORT_NO_FORK) { radixSortIndirect(perm, a, from, to, stable); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue(); queue.add(new Segment(from, to - from, 0)); final AtomicInteger queueSize = new AtomicInteger(1); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads, Executors.defaultThreadFactory()); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService(executorService); final int[] support = stable ? new int[perm.length] : null; for (int i = numberOfThreads; i-- != 0;) executorCompletionService.submit(new Callable() { public Void call() throws Exception { final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; for (;;) { if (queueSize.get() == 0) for (int i = numberOfThreads; i-- != 0;) queue.add(POISON_PILL); final Segment segment = queue.take(); if (segment == POISON_PILL) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; final int signMask = 0; final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (int i = first + length; i-- != first;) count[((a[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } if (stable) { for (int i = first + length; i-- != first;) support[--pos[((a[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]] = perm[i]; System.arraycopy(support, first, perm, first, length); for (int i = 0, p = first; i <= lastUsed; i++) { if (level < maxLevel && count[i] > 1) { if (count[i] < PARALLEL_RADIXSORT_NO_FORK) radixSortIndirect(perm, a, p, p + count[i], stable); else { queueSize.incrementAndGet(); queue.add(new Segment(p, count[i], level + 1)); } } p += count[i]; } java.util.Arrays.fill(count, 0); } else { final int end = first + length - count[lastUsed]; // i moves through the start of each block for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { int t = perm[i]; c = ((a[t]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the // last slot is necessarily OK. while ((d = --pos[c]) > i) { final int z = t; t = perm[d]; perm[d] = z; c = ((a[t]) >>> shift & DIGIT_MASK ^ signMask); } perm[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < PARALLEL_RADIXSORT_NO_FORK) radixSortIndirect(perm, a, i, i + count[c], stable); else { queueSize.incrementAndGet(); queue.add(new Segment(i, count[c], level + 1)); } } } } queueSize.decrementAndGet(); } } }); Throwable problem = null; for (int i = numberOfThreads; i-- != 0;) try { executorCompletionService.take().get(); } catch (Exception e) { problem = e.getCause(); // We keep only the last one. They will // be logged anyway. } executorService.shutdown(); if (problem != null) throw (problem instanceof RuntimeException) ? (RuntimeException) problem : new RuntimeException(problem); } /** * Sorts the specified array using parallel indirect radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

* This implementation uses a pool of {@link Runtime#availableProcessors()} * threads. * * @param perm * a permutation array indexing a. * @param a * the array to be sorted. * @param stable * whether the sorting algorithm should be stable. */ public static void parallelRadixSortIndirect(final int perm[], final char[] a, final boolean stable) { parallelRadixSortIndirect(perm, a, 0, a.length, stable); } /** * Sorts the specified pair of arrays lexicographically using radix sort. *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either a[ i ] < a[ i + 1 ] or * a[ i ] == a[ i + 1 ] and * b[ i ] ≤ b[ i + 1 ]. * * @param a * the first array to be sorted. * @param b * the second array to be sorted. */ public static void radixSort(final char[] a, final char[] b) { ensureSameLength(a, b); radixSort(a, b, 0, a.length); } /** * Sorts the specified range of elements of two arrays using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either a[ i ] < a[ i + 1 ] or * a[ i ] == a[ i + 1 ] and * b[ i ] ≤ b[ i + 1 ]. * * @param a * the first array to be sorted. * @param b * the second array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final char[] a, final char[] b, final int from, final int to) { if (to - from < RADIXSORT_NO_REC) { selectionSort(a, b, from, to); return; } final int layers = 2; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; while (stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; final int signMask = 0; final char[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the // key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (int i = first + length; i-- != first;) count[((k[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; // i moves through the start of each block for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { char t = a[i]; char u = b[i]; c = ((k[i]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is // necessarily OK. while ((d = --pos[c]) > i) { c = ((k[d]) >>> shift & DIGIT_MASK ^ signMask); char z = t; t = a[d]; a[d] = z; z = u; u = b[d]; b[d] = z; } a[i] = t; b[i] = u; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) selectionSort(a, b, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } /** * Sorts the specified range of elements of two arrays using a parallel * radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either a[ i ] < a[ i + 1 ] or * a[ i ] == a[ i + 1 ] and * b[ i ] ≤ b[ i + 1 ]. * *

* This implementation uses a pool of {@link Runtime#availableProcessors()} * threads. * * @param a * the first array to be sorted. * @param b * the second array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelRadixSort(final char[] a, final char[] b, final int from, final int to) { if (to - from < PARALLEL_RADIXSORT_NO_FORK) { quickSort(a, b, from, to); return; } final int layers = 2; if (a.length != b.length) throw new IllegalArgumentException("Array size mismatch."); final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue(); queue.add(new Segment(from, to - from, 0)); final AtomicInteger queueSize = new AtomicInteger(1); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads, Executors.defaultThreadFactory()); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService(executorService); for (int i = numberOfThreads; i-- != 0;) executorCompletionService.submit(new Callable() { public Void call() throws Exception { final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; for (;;) { if (queueSize.get() == 0) for (int i = numberOfThreads; i-- != 0;) queue.add(POISON_PILL); final Segment segment = queue.take(); if (segment == POISON_PILL) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; final char[] k = level < DIGITS_PER_ELEMENT ? a : b; // This // is // the // key // array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // Count keys. for (int i = first + length; i-- != first;) count[((k[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { char t = a[i]; char u = b[i]; c = ((k[i]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last // slot is necessarily OK. while ((d = --pos[c]) > i) { c = ((k[d]) >>> shift & DIGIT_MASK ^ signMask); final char z = t; final char w = u; t = a[d]; u = b[d]; a[d] = z; b[d] = w; } a[i] = t; b[i] = u; } if (level < maxLevel && count[c] > 1) { if (count[c] < PARALLEL_RADIXSORT_NO_FORK) quickSort(a, b, i, i + count[c]); else { queueSize.incrementAndGet(); queue.add(new Segment(i, count[c], level + 1)); } } } queueSize.decrementAndGet(); } } }); Throwable problem = null; for (int i = numberOfThreads; i-- != 0;) try { executorCompletionService.take().get(); } catch (Exception e) { problem = e.getCause(); // We keep only the last one. They will // be logged anyway. } executorService.shutdown(); if (problem != null) throw (problem instanceof RuntimeException) ? (RuntimeException) problem : new RuntimeException(problem); } /** * Sorts two arrays using a parallel radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either a[ i ] < a[ i + 1 ] or * a[ i ] == a[ i + 1 ] and * b[ i ] ≤ b[ i + 1 ]. * *

* This implementation uses a pool of {@link Runtime#availableProcessors()} * threads. * * @param a * the first array to be sorted. * @param b * the second array to be sorted. */ public static void parallelRadixSort(final char[] a, final char[] b) { ensureSameLength(a, b); parallelRadixSort(a, b, 0, a.length); } private static void insertionSortIndirect(final int[] perm, final char[] a, final char[] b, final int from, final int to) { for (int i = from; ++i < to;) { int t = perm[i]; int j = i; for (int u = perm[j - 1]; ((a[t]) < (a[u])) || ((a[t]) == (a[u])) && ((b[t]) < (b[u])); u = perm[--j - 1]) { perm[j] = u; if (from == j - 1) { --j; break; } } perm[j] = t; } } /** * Sorts the specified pair of arrays lexicographically using indirect radix * sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

* This implementation will allocate, in the stable case, a further support * array as large as perm (note that the stable version is * slightly faster). * * @param perm * a permutation array indexing a. * @param a * the array to be sorted. * @param b * the second array to be sorted. * @param stable * whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final int[] perm, final char[] a, final char[] b, final boolean stable) { ensureSameLength(a, b); radixSortIndirect(perm, a, b, 0, a.length, stable); } /** * Sorts the specified pair of arrays lexicographically using indirect radix * sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implement an indirect sort. The elements of * perm (which must be exactly the numbers in the interval * [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

* This implementation will allocate, in the stable case, a further support * array as large as perm (note that the stable version is * slightly faster). * * @param perm * a permutation array indexing a. * @param a * the array to be sorted. * @param b * the second array to be sorted. * @param from * the index of the first element of perm * (inclusive) to be permuted. * @param to * the index of the last element of perm (exclusive) * to be permuted. * @param stable * whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final int[] perm, final char[] a, final char[] b, final int from, final int to, final boolean stable) { if (to - from < RADIXSORT_NO_REC) { insertionSortIndirect(perm, a, b, from, to); return; } final int layers = 2; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; final int[] support = stable ? new int[perm.length] : null; while (stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; final int signMask = 0; final char[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the // key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (int i = first + length; i-- != first;) count[((k[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = stable ? 0 : first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } if (stable) { for (int i = first + length; i-- != first;) support[--pos[((k[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]] = perm[i]; System.arraycopy(support, 0, perm, first, length); for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (level < maxLevel && count[i] > 1) { if (count[i] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, p, p + count[i]); else { offsetStack[stackPos] = p; lengthStack[stackPos] = count[i]; levelStack[stackPos++] = level + 1; } } p += count[i]; } java.util.Arrays.fill(count, 0); } else { final int end = first + length - count[lastUsed]; // i moves through the start of each block for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { int t = perm[i]; c = ((k[t]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is // necessarily OK. while ((d = --pos[c]) > i) { final int z = t; t = perm[d]; perm[d] = z; c = ((k[t]) >>> shift & DIGIT_MASK ^ signMask); } perm[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } } private static void selectionSort(final char[][] a, final int from, final int to, final int level) { final int layers = a.length; final int firstLayer = level / DIGITS_PER_ELEMENT; for (int i = from; i < to - 1; i++) { int m = i; for (int j = i + 1; j < to; j++) { for (int p = firstLayer; p < layers; p++) { if (a[p][j] < a[p][m]) { m = j; break; } else if (a[p][j] > a[p][m]) break; } } if (m != i) { for (int p = layers; p-- != 0;) { final char u = a[p][i]; a[p][i] = a[p][m]; a[p][m] = u; } } } } /** * Sorts the specified array of arrays lexicographically using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implements a lexicographical sorting of the provided * arrays. Tuples of elements in the same position will be considered a * single key, and permuted accordingly. * * @param a * an array containing arrays of equal length to be sorted * lexicographically in parallel. */ public static void radixSort(final char[][] a) { radixSort(a, 0, a[0].length); } /** * Sorts the specified array of arrays lexicographically using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implements a lexicographical sorting of the provided * arrays. Tuples of elements in the same position will be considered a * single key, and permuted accordingly. * * @param a * an array containing arrays of equal length to be sorted * lexicographically in parallel. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final char[][] a, final int from, final int to) { if (to - from < RADIXSORT_NO_REC) { selectionSort(a, from, to, 0); return; } final int layers = a.length; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; for (int p = layers, l = a[0].length; p-- != 0;) if (a[p].length != l) throw new IllegalArgumentException("The array of index " + p + " has not the same length of the array of index 0."); final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; final char[] t = new char[layers]; while (stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; final int signMask = 0; final char[] k = a[level / DIGITS_PER_ELEMENT]; // This is the key // array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (int i = first + length; i-- != first;) count[((k[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; // i moves through the start of each block for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { for (int p = layers; p-- != 0;) t[p] = a[p][i]; c = ((k[i]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is // necessarily OK. while ((d = --pos[c]) > i) { c = ((k[d]) >>> shift & DIGIT_MASK ^ signMask); for (int p = layers; p-- != 0;) { final char u = t[p]; t[p] = a[p][d]; a[p][d] = u; } } for (int p = layers; p-- != 0;) a[p][i] = t[p]; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) selectionSort(a, i, i + count[c], level + 1); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } /** * Shuffles the specified array fragment using the specified pseudorandom * number generator. * * @param a * the array to be shuffled. * @param from * the index of the first element (inclusive) to be shuffled. * @param to * the index of the last element (exclusive) to be shuffled. * @param random * a pseudorandom number generator (please use a XorShift* * generator). * @return a. */ public static char[] shuffle(final char[] a, final int from, final int to, final Random random) { for (int i = to - from; i-- != 0;) { final int p = random.nextInt(i + 1); final char t = a[from + i]; a[from + i] = a[from + p]; a[from + p] = t; } return a; } /** * Shuffles the specified array using the specified pseudorandom number * generator. * * @param a * the array to be shuffled. * @param random * a pseudorandom number generator (please use a XorShift* * generator). * @return a. */ public static char[] shuffle(final char[] a, final Random random) { for (int i = a.length; i-- != 0;) { final int p = random.nextInt(i + 1); final char t = a[i]; a[i] = a[p]; a[p] = t; } return a; } /** * Reverses the order of the elements in the specified array. * * @param a * the array to be reversed. * @return a. */ public static char[] reverse(final char[] a) { final int length = a.length; for (int i = length / 2; i-- != 0;) { final char t = a[length - i - 1]; a[length - i - 1] = a[i]; a[i] = t; } return a; } /** * Reverses the order of the elements in the specified array fragment. * * @param a * the array to be reversed. * @param from * the index of the first element (inclusive) to be reversed. * @param to * the index of the last element (exclusive) to be reversed. * @return a. */ public static char[] reverse(final char[] a, final int from, final int to) { final int length = to - from; for (int i = length / 2; i-- != 0;) { final char t = a[from + length - i - 1]; a[from + length - i - 1] = a[from + i]; a[from + i] = t; } return a; } /** A type-specific content-based hash strategy for arrays. */ private static final class ArrayHashStrategy implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; public int hashCode(final char[] o) { return java.util.Arrays.hashCode(o); } public boolean equals(final char[] a, final char[] b) { return java.util.Arrays.equals(a, b); } } /** * A type-specific content-based hash strategy for arrays. * *

* This hash strategy may be used in custom hash collections whenever keys * are arrays, and they must be considered equal by content. This strategy * will handle null correctly, and it is serializable. */ public final static Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy(); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy