All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.objects.ObjectOpenHashBigSet Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/* Copyright (C) 1991-2016 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   .  */
/* This header is separate from features.h so that the compiler can
   include it implicitly at the start of every compilation.  It must
   not itself include  or any other header that includes
    because the implicit include comes before any feature
   test macros that may be defined in a source file before it first
   explicitly includes a system header.  GCC knows the name of this
   header in order to preinclude it.  */
/* glibc's intent is to support the IEC 559 math functionality, real
   and complex.  If the GCC (4.9 and later) predefined macros
   specifying compiler intent are available, use them to determine
   whether the overall intent is to support these features; otherwise,
   presume an older compiler has intent to support these features and
   define these macros by default.  */
/* wchar_t uses Unicode 9.0.0.  Version 9.0 of the Unicode Standard is
   synchronized with ISO/IEC 10646:2014, fourth edition, plus
   Amd. 1  and Amd. 2 and 273 characters from forthcoming  10646, fifth edition.
   (Amd. 2 was published 2016-05-01,
   see https://www.iso.org/obp/ui/#iso:std:iso-iec:10646:ed-4:v1:amd:2:v1:en) */
/* We do not support C11 .  */
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.objects;

import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.Size64;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;

/**
 * A type-specific hash big set with with a fast, small-footprint
 * implementation.
 *
 * 

* Instances of this class use a hash table to represent a big set: the number * of elements in the set is limited only by the amount of core memory. The * table (backed by a {@linkplain it.unimi.dsi.fastutil.BigArrays big array}) is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth of * the load factor, it is halved in size. However, halving is not performed when * deleting entries from an iterator, as it would interfere with the iteration * process. * *

* Note that {@link #clear()} does not modify the hash table size. Rather, a * family of {@linkplain #trim() trimming methods} lets you control the size of * the table; this is particularly useful if you reuse instances of this class. * *

* The methods of this class are about 30% slower than those of the * corresponding non-big set. * * @see Hash * @see HashCommon */ public class ObjectOpenHashBigSet extends AbstractObjectSet implements java.io.Serializable, Cloneable, Hash, Size64 { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The big array of keys. */ protected transient K[][] key; /** The mask for wrapping a position counter. */ protected transient long mask; /** The mask for wrapping a segment counter. */ protected transient int segmentMask; /** The mask for wrapping a base counter. */ protected transient int baseMask; /** Whether this set contains the null key. */ protected transient boolean containsNull; /** The current table size (always a power of 2). */ protected transient long n; /** * Threshold after which we rehash. It must be the table size times * {@link #f}. */ protected transient long maxFill; /** The acceptable load factor. */ protected final float f; /** Number of entries in the set. */ protected long size; /** Initialises the mask values. */ private void initMasks() { mask = n - 1; /* * Note that either we have more than one segment, and in this case all * segments are BigArrays.SEGMENT_SIZE long, or we have exactly one * segment whose length is a power of two. */ segmentMask = key[0].length - 1; baseMask = key.length - 1; } /** * Creates a new hash big set. * *

* The actual table size will be the least power of two greater than * expected/f. * * @param expected * the expected number of elements in the set. * @param f * the load factor. */ @SuppressWarnings("unchecked") public ObjectOpenHashBigSet(final long expected, final float f) { if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); if (n < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; n = bigArraySize(expected, f); maxFill = maxFill(n, f); key = (K[][]) ObjectBigArrays.newBigArray(n); initMasks(); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor. * * @param expected * the expected number of elements in the hash big set. */ public ObjectOpenHashBigSet(final long expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set with initial expected * {@link Hash#DEFAULT_INITIAL_SIZE} elements and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public ObjectOpenHashBigSet() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set copying a given collection. * * @param c * a {@link Collection} to be copied into the new hash big set. * @param f * the load factor. */ public ObjectOpenHashBigSet(final Collection c, final float f) { this(c.size(), f); addAll(c); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor copying a given collection. * * @param c * a {@link Collection} to be copied into the new hash big set. */ public ObjectOpenHashBigSet(final Collection c) { this(c, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set copying a given type-specific collection. * * @param c * a type-specific collection to be copied into the new hash big * set. * @param f * the load factor. */ public ObjectOpenHashBigSet(final ObjectCollection c, final float f) { this(c.size(), f); addAll(c); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor copying a given type-specific collection. * * @param c * a type-specific collection to be copied into the new hash big * set. */ public ObjectOpenHashBigSet(final ObjectCollection c) { this(c, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set using elements provided by a type-specific * iterator. * * @param i * a type-specific iterator whose elements will fill the new hash * big set. * @param f * the load factor. */ public ObjectOpenHashBigSet(final Iterator i, final float f) { this(DEFAULT_INITIAL_SIZE, f); while (i.hasNext()) add(i.next()); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor using elements provided by a type-specific iterator. * * @param i * a type-specific iterator whose elements will fill the new hash * big set. */ public ObjectOpenHashBigSet(final Iterator i) { this(i, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set and fills it with the elements of a given * array. * * @param a * an array whose elements will be used to fill the new hash big * set. * @param offset * the first element to use. * @param length * the number of elements to use. * @param f * the load factor. */ public ObjectOpenHashBigSet(final K[] a, final int offset, final int length, final float f) { this(length < 0 ? 0 : length, f); ObjectArrays.ensureOffsetLength(a, offset, length); for (int i = 0; i < length; i++) add(a[offset + i]); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor and fills it with the elements of a given array. * * @param a * an array whose elements will be used to fill the new hash big * set. * @param offset * the first element to use. * @param length * the number of elements to use. */ public ObjectOpenHashBigSet(final K[] a, final int offset, final int length) { this(a, offset, length, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set copying the elements of an array. * * @param a * an array to be copied into the new hash big set. * @param f * the load factor. */ public ObjectOpenHashBigSet(final K[] a, final float f) { this(a, 0, a.length, f); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor copying the elements of an array. * * @param a * an array to be copied into the new hash big set. */ public ObjectOpenHashBigSet(final K[] a) { this(a, DEFAULT_LOAD_FACTOR); } private long realSize() { return containsNull ? size - 1 : size; } private void ensureCapacity(final long capacity) { final long needed = bigArraySize(capacity, f); if (needed > n) rehash(needed); } /** {@inheritDoc} */ public boolean addAll(Collection c) { final long size = c instanceof Size64 ? ((Size64) c).size64() : c.size(); // The resulting collection will be at least c.size() big if (f <= .5) ensureCapacity(size); // The resulting collection will be // sized for c.size() elements else ensureCapacity(size64() + size); // The resulting collection will // be sized for size() + // c.size() elements return super.addAll(c); } public boolean add(final K k) { int displ, base; if (((k) == null)) { if (containsNull) return false; containsNull = true; } else { K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((k).hashCode()))); // The starting point. if (!((curr = key[base = (int) ((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int) (h & segmentMask)]) == null)) { if (((curr).equals(k))) return false; while (!((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) if (((curr).equals(k))) return false; } key[base][displ] = k; } if (size++ >= maxFill) rehash(2 * n); if (ASSERTS) checkTable(); return true; } /** * Add a random element if not present, get the existing value if already * present. * * This is equivalent to (but faster than) doing a: * *

	 * K exist = set.get(k);
	 * if (exist == null) {
	 * 	set.add(k);
	 * 	exist = k;
	 * }
	 * 
*/ public K addOrGet(final K k) { int displ, base; if (((k) == null)) { if (containsNull) return null; containsNull = true; } else { K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((k).hashCode()))); // The starting point. if (!((curr = key[base = (int) ((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int) (h & segmentMask)]) == null)) { if (((curr).equals(k))) return curr; while (!((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) if (((curr).equals(k))) return curr; } key[base][displ] = k; } if (size++ >= maxFill) rehash(2 * n); if (ASSERTS) checkTable(); return k; } /** * Shifts left entries with the specified hash code, starting at the * specified position, and empties the resulting free entry. * * @param pos * a starting position. */ protected final void shiftKeys(long pos) { // Shift entries with the same hash. long last, slot; final K[][] key = this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((ObjectBigArrays.get(key, pos)) == null)) { ObjectBigArrays.set(key, last, (null)); return; } slot = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((ObjectBigArrays.get(key, pos)).hashCode()))) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } ObjectBigArrays.set(key, last, ObjectBigArrays.get(key, pos)); } } private boolean removeEntry(final int base, final int displ) { shiftKeys(base * (long) BigArrays.SEGMENT_SIZE + displ); if (--size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } private boolean removeNullEntry() { containsNull = false; if (--size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } public boolean rem(final Object k) { if (((k) == null)) { if (containsNull) return removeNullEntry(); return false; } K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((k).hashCode()))); int displ, base; // The starting point. if (((curr = key[base = (int) ((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int) (h & segmentMask)]) == null)) return false; if (((curr).equals(k))) return removeEntry(base, displ); while (true) { if (((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) return false; if (((curr).equals(k))) return removeEntry(base, displ); } } public boolean contains(final Object k) { if (((k) == null)) return containsNull; K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((k).hashCode()))); int displ, base; // The starting point. if (((curr = key[base = (int) ((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int) (h & segmentMask)]) == null)) return false; if (((curr).equals(k))) return true; while (true) { if (((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) return false; if (((curr).equals(k))) return true; } } /** * Returns the element of this set that is equal to the given key, or * null. * * @return the element of this set that is equal to the given key, or * null. */ public K get(final Object k) { if (k == null) return null; // This is correct independently of the // value of containsNull K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((k).hashCode()))); int displ, base; // The starting point. if (((curr = key[base = (int) ((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int) (h & segmentMask)]) == null)) return null; if (((curr).equals(k))) return curr; while (true) { if (((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) return null; if (((curr).equals(k))) return curr; } } /* * Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim(long)}. * */ public void clear() { if (size == 0) return; size = 0; containsNull = false; ObjectBigArrays.fill(key, (null)); } /** An iterator over a hash big set. */ private class SetIterator extends AbstractObjectIterator { /** * The base of the last entry returned, if positive or zero; initially, * the number of components of the key array. If negative, the last * element returned was that of index {@code - base - 1} from the * {@link #wrapped} list. */ int base = key.length; /** The displacement of the last entry returned; initially, zero. */ int displ; /** * The index of the last entry that has been returned (or * {@link Long#MIN_VALUE} if {@link #base} is negative). It is -1 if * either we did not return an entry yet, or the last returned entry has * been removed. */ long last = -1; /** * A downward counter measuring how many entries must still be returned. */ long c = size; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = ObjectOpenHashBigSet.this.containsNull; /** * A lazily allocated list containing elements that have wrapped around * the table because of removals. */ ObjectArrayList wrapped; public boolean hasNext() { return c != 0; } public K next() { if (!hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNull) { mustReturnNull = false; last = n; return (null); } final K[][] key = ObjectOpenHashBigSet.this.key; for (;;) { if (displ == 0 && base <= 0) { // We are just enumerating elements from the wrapped list. last = Long.MIN_VALUE; return wrapped.get(-(--base) - 1); } if (displ-- == 0) displ = key[--base].length - 1; final K k = key[base][displ]; if (!((k) == null)) { last = base * (long) BigArrays.SEGMENT_SIZE + displ; return k; } } } /** * Shifts left entries with the specified hash code, starting at the * specified position, and empties the resulting free entry. * * @param pos * a starting position. */ private final void shiftKeys(long pos) { // Shift entries with the same hash. long last, slot; K curr; final K[][] key = ObjectOpenHashBigSet.this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((curr = ObjectBigArrays.get(key, pos)) == null)) { ObjectBigArrays.set(key, last, (null)); return; } slot = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((curr).hashCode()))) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new ObjectArrayList(); wrapped.add(ObjectBigArrays.get(key, pos)); } ObjectBigArrays.set(key, last, curr); } } public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) ObjectOpenHashBigSet.this.containsNull = false; else if (base >= 0) shiftKeys(last); else { // We're removing wrapped entries. ObjectOpenHashBigSet.this.remove(wrapped.set(-base - 1, null)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } } public ObjectIterator iterator() { return new SetIterator(); } /** * A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

* If you need to reduce the table size to fit exactly this set, use * {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** * Rehashes this set, making the table as small as possible. * *

* This method rehashes the table to the smallest size satisfying the load * factor. It can be used when the set will not be changed anymore, so to * optimize access speed and size. * *

* If the table size is already the minimum possible, this method does * nothing. * * @return true if there was enough memory to trim the set. * @see #trim(long) */ public boolean trim() { final long l = bigArraySize(size, f); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes this set if the table is too large. * *

* Let N be the smallest table size that can hold * max(n,{@link #size64()}) entries, still satisfying the load * factor. If the current table size is smaller than or equal to * N, this method does nothing. Otherwise, it rehashes this set * in a table of size N. * *

* This method is useful when reusing sets. {@linkplain #clear() Clearing a * set} leaves the table size untouched. If you are reusing a set many * times, you can call this method with a typical size to avoid keeping * around a very large table just because of a few large transient sets. * * @param n * the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim(final long n) { final long l = bigArraySize(n, f); if (this.n <= l) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Resizes the set. * *

* This method implements the basic rehashing strategy, and may be overriden * by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN * the new size */ @SuppressWarnings("unchecked") protected void rehash(final long newN) { final K key[][] = this.key; final K newKey[][] = (K[][]) ObjectBigArrays.newBigArray(newN); final long mask = newN - 1; // Note that this is used by the hashing // macro final int newSegmentMask = newKey[0].length - 1; final int newBaseMask = newKey.length - 1; int base = 0, displ = 0, b, d; long h; K k; for (long i = realSize(); i-- != 0;) { while (((key[base][displ]) == null)) base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)); k = key[base][displ]; h = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((k).hashCode()))); // The starting point. if (!((newKey[b = (int) ((h & mask) >>> BigArrays.SEGMENT_SHIFT)][d = (int) (h & newSegmentMask)]) == null)) while (!((newKey[b = (b + ((d = (d + 1) & newSegmentMask) == 0 ? 1 : 0)) & newBaseMask][d]) == null)) ; newKey[b][d] = k; base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)); } this.n = newN; this.key = newKey; initMasks(); maxFill = maxFill(n, f); } @Deprecated public int size() { return (int) Math.min(Integer.MAX_VALUE, size); } public long size64() { return size; } public boolean isEmpty() { return size == 0; } /** * Returns a deep copy of this big set. * *

* This method performs a deep copy of this big hash set; the data stored in * the set, however, is not cloned. Note that this makes a difference only * for object keys. * * @return a deep copy of this big set. */ @SuppressWarnings("unchecked") public ObjectOpenHashBigSet clone() { ObjectOpenHashBigSet c; try { c = (ObjectOpenHashBigSet) super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = ObjectBigArrays.copy(key); c.containsNull = containsNull; return c; } /** * Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important that the * value returned by this method is the same value as the one returned by * the overriden method. * * @return a hash code for this set. */ public int hashCode() { final K key[][] = this.key; int h = 0, base = 0, displ = 0; for (long j = realSize(); j-- != 0;) { while (((key[base][displ]) == null)) base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)); if (this != key[base][displ]) h += ((key[base][displ]).hashCode()); base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)); } return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final ObjectIterator i = iterator(); s.defaultWriteObject(); for (long j = size; j-- != 0;) s.writeObject(i.next()); } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = bigArraySize(size, f); maxFill = maxFill(n, f); final K[][] key = this.key = (K[][]) ObjectBigArrays.newBigArray(n); initMasks(); long h; K k; int base, displ; for (long i = size; i-- != 0;) { k = (K) s.readObject(); if (((k) == null)) containsNull = true; else { h = (it.unimi.dsi.fastutil.HashCommon.mix((long) ((k).hashCode()))); if (!((key[base = (int) ((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int) (h & segmentMask)]) == null)) while (!((key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) ; key[base][displ] = k; } } if (ASSERTS) checkTable(); } private void checkTable() { } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy