net.imglib2.neighborsearch.KNearestNeighborSearchOnKDTree Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of imglib2 Show documentation
Show all versions of imglib2 Show documentation
A multidimensional, type-agnostic image processing library.
/*
* #%L
* ImgLib2: a general-purpose, multidimensional image processing library.
* %%
* Copyright (C) 2009 - 2018 Tobias Pietzsch, Stephan Preibisch, Stephan Saalfeld,
* John Bogovic, Albert Cardona, Barry DeZonia, Christian Dietz, Jan Funke,
* Aivar Grislis, Jonathan Hale, Grant Harris, Stefan Helfrich, Mark Hiner,
* Martin Horn, Steffen Jaensch, Lee Kamentsky, Larry Lindsey, Melissa Linkert,
* Mark Longair, Brian Northan, Nick Perry, Curtis Rueden, Johannes Schindelin,
* Jean-Yves Tinevez and Michael Zinsmaier.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package net.imglib2.neighborsearch;
import net.imglib2.KDTree;
import net.imglib2.KDTreeNode;
import net.imglib2.RealLocalizable;
import net.imglib2.Sampler;
/**
* Implementation of {@link KNearestNeighborSearch} search for kd-trees.
*
* @author Tobias Pietzsch
*/
public class KNearestNeighborSearchOnKDTree< T > implements KNearestNeighborSearch< T >
{
protected KDTree< T > tree;
protected final int n;
protected final double[] pos;
protected final int k;
protected KDTreeNode< T >[] bestPoints;
protected double[] bestSquDistances;
@SuppressWarnings( "unchecked" )
public KNearestNeighborSearchOnKDTree( final KDTree< T > tree, final int k )
{
this.tree = tree;
this.n = tree.numDimensions();
this.pos = new double[ n ];
this.k = k;
this.bestPoints = new KDTreeNode[ k ];
this.bestSquDistances = new double[ k ];
for ( int i = 0; i < k; ++i )
bestSquDistances[ i ] = Double.MAX_VALUE;
}
@Override
public int numDimensions()
{
return n;
}
@Override
public int getK()
{
return k;
}
@Override
public void search( final RealLocalizable reference )
{
reference.localize( pos );
for ( int i = 0; i < k; ++i )
bestSquDistances[ i ] = Double.MAX_VALUE;
searchNode( tree.getRoot() );
}
protected void searchNode( final KDTreeNode< T > current )
{
// consider the current node
final double squDistance = current.squDistanceTo( pos );
if ( squDistance < bestSquDistances[ k - 1 ] )
{
int i = k - 1;
for ( int j = i - 1; i > 0 && squDistance < bestSquDistances[ j ]; --i, --j )
{
bestSquDistances[ i ] = bestSquDistances[ j ];
bestPoints[ i ] = bestPoints[ j ];
}
bestSquDistances[ i ] = squDistance;
bestPoints[ i ] = current;
}
final double axisDiff = pos[ current.getSplitDimension() ] - current.getSplitCoordinate();
final double axisSquDistance = axisDiff * axisDiff;
final boolean leftIsNearBranch = axisDiff < 0;
// search the near branch
final KDTreeNode< T > nearChild = leftIsNearBranch ? current.left : current.right;
final KDTreeNode< T > awayChild = leftIsNearBranch ? current.right : current.left;
if ( nearChild != null )
searchNode( nearChild );
// search the away branch - maybe
if ( ( axisSquDistance <= bestSquDistances[ k - 1 ] ) && ( awayChild != null ) )
searchNode( awayChild );
}
@Override
public Sampler< T > getSampler( final int i )
{
return bestPoints[ i ];
}
@Override
public RealLocalizable getPosition( final int i )
{
return bestPoints[ i ];
}
@Override
public double getSquareDistance( final int i )
{
return bestSquDistances[ i ];
}
@Override
public double getDistance( final int i )
{
return Math.sqrt( bestSquDistances[ i ] );
}
/* NearestNeighborSearch */
@Override
public RealLocalizable getPosition()
{
return getPosition( 0 );
}
@Override
public Sampler< T > getSampler()
{
return getSampler( 0 );
}
@Override
public double getSquareDistance()
{
return getSquareDistance( 0 );
}
@Override
public double getDistance()
{
return getDistance( 0 );
}
@Override
public KNearestNeighborSearchOnKDTree< T > copy()
{
final KNearestNeighborSearchOnKDTree< T > copy = new KNearestNeighborSearchOnKDTree< T >( tree, k );
System.arraycopy( pos, 0, copy.pos, 0, pos.length );
for ( int i = 0; i < k; ++i )
{
copy.bestPoints[ i ] = bestPoints[ i ];
copy.bestSquDistances[ i ] = bestSquDistances[ i ];
}
return copy;
}
}