net.imglib2.neighborsearch.RadiusNeighborSearchOnKDTree Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of imglib2 Show documentation
Show all versions of imglib2 Show documentation
A multidimensional, type-agnostic image processing library.
/*
* #%L
* ImgLib2: a general-purpose, multidimensional image processing library.
* %%
* Copyright (C) 2009 - 2018 Tobias Pietzsch, Stephan Preibisch, Stephan Saalfeld,
* John Bogovic, Albert Cardona, Barry DeZonia, Christian Dietz, Jan Funke,
* Aivar Grislis, Jonathan Hale, Grant Harris, Stefan Helfrich, Mark Hiner,
* Martin Horn, Steffen Jaensch, Lee Kamentsky, Larry Lindsey, Melissa Linkert,
* Mark Longair, Brian Northan, Nick Perry, Curtis Rueden, Johannes Schindelin,
* Jean-Yves Tinevez and Michael Zinsmaier.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package net.imglib2.neighborsearch;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import net.imglib2.KDTree;
import net.imglib2.KDTreeNode;
import net.imglib2.RealLocalizable;
import net.imglib2.Sampler;
import net.imglib2.util.ValuePair;
/**
* Implementation of {@link RadiusNeighborSearch} search for kd-trees.
*
* @author Tobias Pietzsch
*/
public class RadiusNeighborSearchOnKDTree< T > implements RadiusNeighborSearch< T >
{
protected KDTree< T > tree;
protected final int n;
protected final double[] pos;
protected ArrayList< ValuePair< KDTreeNode< T >, Double > > resultPoints;
public RadiusNeighborSearchOnKDTree( final KDTree< T > tree )
{
this.tree = tree;
this.n = tree.numDimensions();
this.pos = new double[ n ];
this.resultPoints = new ArrayList< ValuePair< KDTreeNode< T >, Double > >();
}
@Override
public void search( final RealLocalizable reference, final double radius, final boolean sortResults )
{
assert radius >= 0;
reference.localize( pos );
resultPoints.clear();
searchNode( tree.getRoot(), radius * radius );
if ( sortResults )
{
Collections.sort( resultPoints, new Comparator< ValuePair< KDTreeNode< T >, Double > >()
{
@Override
public int compare( final ValuePair< KDTreeNode< T >, Double > o1, final ValuePair< KDTreeNode< T >, Double > o2 )
{
return Double.compare( o1.b, o2.b );
}
} );
}
}
@Override
public int numDimensions()
{
return n;
}
protected void searchNode( final KDTreeNode< T > current, final double squRadius )
{
// consider the current node
final double squDistance = current.squDistanceTo( pos );
if ( squDistance <= squRadius )
{
resultPoints.add( new ValuePair< KDTreeNode< T >, Double >( current, squDistance ) );
}
final double axisDiff = pos[ current.getSplitDimension() ] - current.getSplitCoordinate();
final double axisSquDistance = axisDiff * axisDiff;
final boolean leftIsNearBranch = axisDiff < 0;
// search the near branch
final KDTreeNode< T > nearChild = leftIsNearBranch ? current.left : current.right;
final KDTreeNode< T > awayChild = leftIsNearBranch ? current.right : current.left;
if ( nearChild != null )
searchNode( nearChild, squRadius );
// search the away branch - maybe
if ( ( axisSquDistance <= squRadius ) && ( awayChild != null ) )
searchNode( awayChild, squRadius );
}
@Override
public int numNeighbors()
{
return resultPoints.size();
}
@Override
public Sampler< T > getSampler( final int i )
{
return resultPoints.get( i ).a;
}
@Override
public RealLocalizable getPosition( final int i )
{
return resultPoints.get( i ).a;
}
@Override
public double getSquareDistance( final int i )
{
return resultPoints.get( i ).b;
}
@Override
public double getDistance( final int i )
{
return Math.sqrt( resultPoints.get( i ).b );
}
}