All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.uci.ics.jung.graph.SparseGraph Maven / Gradle / Ivy

There is a newer version: 2.1.1
Show newest version
/*
 * Created on Apr 15, 2007
 *
 * Copyright (c) 2007, The JUNG Authors 
 *
 * All rights reserved.
 *
 * This software is open-source under the BSD license; see either
 * "license.txt" or
 * https://github.com/jrtom/jung/blob/master/LICENSE for a description.
 */
package edu.uci.ics.jung.graph;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;

import com.google.common.base.Supplier;

import edu.uci.ics.jung.graph.util.EdgeType;
import edu.uci.ics.jung.graph.util.Pair;

/**
 * An implementation of Graph that is suitable for sparse graphs and
 * permits both directed and undirected edges.
 */
@SuppressWarnings("serial")
public class SparseGraph 
    extends AbstractGraph 
    implements Graph
{
    /**
     * @param  the vertex type for the graph Supplier
     * @param  the edge type for the graph Supplier
     * @return a {@code Supplier} that creates an instance of this graph type.
     */
    public static  Supplier> getFactory() 
    { 
        return new Supplier> () 
        {
            public Graph get() 
            {
                return new SparseGraph();
            }
        };
    }

    protected static final int INCOMING = 0;
    protected static final int OUTGOING = 1;
    protected static final int INCIDENT = 2;
    
    protected Map[]> vertex_maps; // Map of vertices to adjacency maps of vertices to {incoming, outgoing, incident} edges
    protected Map> directed_edges;    // Map of directed edges to incident vertex sets
    protected Map> undirected_edges;    // Map of undirected edges to incident vertex sets
    
    /**
     * Creates an instance.
     */
    public SparseGraph()
    {
        vertex_maps = new HashMap[]>();
        directed_edges = new HashMap>();
        undirected_edges = new HashMap>();
    }
    
    @Override
    public E findEdge(V v1, V v2)
    {
        if (!containsVertex(v1) || !containsVertex(v2))
            return null;
        E edge = vertex_maps.get(v1)[OUTGOING].get(v2);
        if (edge == null)
            edge = vertex_maps.get(v1)[INCIDENT].get(v2);
        return edge;
    }

    @Override
    public Collection findEdgeSet(V v1, V v2)
    {
        if (!containsVertex(v1) || !containsVertex(v2))
            return null;
        Collection edges = new ArrayList(2);
        E e1 = vertex_maps.get(v1)[OUTGOING].get(v2);
        if (e1 != null)
            edges.add(e1);
        E e2 = vertex_maps.get(v1)[INCIDENT].get(v2);
        if (e1 != null)
            edges.add(e2);
        return edges;
    }
    
    @Override
    public boolean addEdge(E edge, Pair endpoints, EdgeType edgeType)
    {
        Pair new_endpoints = getValidatedEndpoints(edge, endpoints);
        if (new_endpoints == null)
            return false;
        
        V v1 = new_endpoints.getFirst();
        V v2 = new_endpoints.getSecond();
        
        // undirected edges and directed edges are not considered to be parallel to each other,
        // so as long as anything that's returned by findEdge is not of the same type as
        // edge, we're fine
        E connection = findEdge(v1, v2);
        if (connection != null && getEdgeType(connection) == edgeType)
            return false;

        if (!containsVertex(v1))
            this.addVertex(v1);
        
        if (!containsVertex(v2))
            this.addVertex(v2);
        
        // map v1 to  and vice versa
        if (edgeType == EdgeType.DIRECTED)
        {
            vertex_maps.get(v1)[OUTGOING].put(v2, edge);
            vertex_maps.get(v2)[INCOMING].put(v1, edge);
            directed_edges.put(edge, new_endpoints);
        }
        else
        {
            vertex_maps.get(v1)[INCIDENT].put(v2, edge);
            vertex_maps.get(v2)[INCIDENT].put(v1, edge);
            undirected_edges.put(edge, new_endpoints);
        }
        
        return true;
    }

    
    
    public Collection getInEdges(V vertex)
    {
        if (!containsVertex(vertex))
            return null;
        
        // combine directed inedges and undirected
        Collection in = new HashSet(vertex_maps.get(vertex)[INCOMING].values());
        in.addAll(vertex_maps.get(vertex)[INCIDENT].values());
        return Collections.unmodifiableCollection(in);
    }

    public Collection getOutEdges(V vertex)
    {
        if (!containsVertex(vertex))
            return null;
        
        // combine directed outedges and undirected
        Collection out = new HashSet(vertex_maps.get(vertex)[OUTGOING].values());
        out.addAll(vertex_maps.get(vertex)[INCIDENT].values());
        return Collections.unmodifiableCollection(out);
    }

    public Collection getPredecessors(V vertex)
    {
        if (!containsVertex(vertex))
            return null;
        
        // consider directed inedges and undirected
        Collection preds = new HashSet(vertex_maps.get(vertex)[INCOMING].keySet());
        preds.addAll(vertex_maps.get(vertex)[INCIDENT].keySet());
        return Collections.unmodifiableCollection(preds);
    }

    public Collection getSuccessors(V vertex)
    {
        if (!containsVertex(vertex))
            return null;
        
        // consider directed outedges and undirected
        Collection succs = new HashSet(vertex_maps.get(vertex)[OUTGOING].keySet());
        succs.addAll(vertex_maps.get(vertex)[INCIDENT].keySet());
        return Collections.unmodifiableCollection(succs);
    }

    public Collection getEdges(EdgeType edgeType)
    {
        if (edgeType == EdgeType.DIRECTED)
            return Collections.unmodifiableCollection(directed_edges.keySet());
        else if (edgeType == EdgeType.UNDIRECTED)
            return Collections.unmodifiableCollection(undirected_edges.keySet());
        else
            return null;
    }

    public Pair getEndpoints(E edge)
    {
        Pair endpoints;
        endpoints = directed_edges.get(edge);
        if (endpoints == null)
            return undirected_edges.get(edge);
        else
            return endpoints;
    }

    public EdgeType getEdgeType(E edge)
    {
        if (directed_edges.containsKey(edge))
            return EdgeType.DIRECTED;
        else if (undirected_edges.containsKey(edge))
            return EdgeType.UNDIRECTED;
        else
            return null;
    }

    public V getSource(E directed_edge)
    {
        if (getEdgeType(directed_edge) == EdgeType.DIRECTED)
            return directed_edges.get(directed_edge).getFirst();
        else
            return null;
    }

    public V getDest(E directed_edge)
    {
        if (getEdgeType(directed_edge) == EdgeType.DIRECTED)
            return directed_edges.get(directed_edge).getSecond();
        else
            return null;
    }

    public boolean isSource(V vertex, E edge)
    {
        if (!containsVertex(vertex) || !containsEdge(edge))
            return false;
        
        V source = getSource(edge);
        if (source != null)
            return source.equals(vertex);
        else
            return false;
    }

    public boolean isDest(V vertex, E edge)
    {
        if (!containsVertex(vertex) || !containsEdge(edge))
            return false;
        
        V dest = getDest(edge);
        if (dest != null)
            return dest.equals(vertex);
        else
            return false;
    }

    public Collection getEdges()
    {
        Collection edges = new ArrayList(directed_edges.keySet());
        edges.addAll(undirected_edges.keySet());
        return Collections.unmodifiableCollection(edges);
    }

    public Collection getVertices()
    {
        return Collections.unmodifiableCollection(vertex_maps.keySet());
    }

    public boolean containsVertex(V vertex)
    {
        return vertex_maps.containsKey(vertex);
    }

    public boolean containsEdge(E edge)
    {
        return directed_edges.containsKey(edge) || undirected_edges.containsKey(edge);
    }

    public int getEdgeCount()
    {
        return directed_edges.size() + undirected_edges.size();
    }

    public int getVertexCount()
    {
        return vertex_maps.size();
    }

    public Collection getNeighbors(V vertex)
    {
        if (!containsVertex(vertex))
            return null;
        // consider directed edges and undirected edges
        Collection neighbors = new HashSet(vertex_maps.get(vertex)[INCOMING].keySet());
        neighbors.addAll(vertex_maps.get(vertex)[OUTGOING].keySet());
        neighbors.addAll(vertex_maps.get(vertex)[INCIDENT].keySet());
        return Collections.unmodifiableCollection(neighbors);
    }

    public Collection getIncidentEdges(V vertex)
    {
        if (!containsVertex(vertex))
            return null;
        Collection incident = new HashSet(vertex_maps.get(vertex)[INCOMING].values());
        incident.addAll(vertex_maps.get(vertex)[OUTGOING].values());
        incident.addAll(vertex_maps.get(vertex)[INCIDENT].values());
        return Collections.unmodifiableCollection(incident);
    }

    @SuppressWarnings("unchecked")
    public boolean addVertex(V vertex)
    {
        if(vertex == null) {
            throw new IllegalArgumentException("vertex may not be null");
        }
        if (!containsVertex(vertex)) {
            vertex_maps.put(vertex, new HashMap[]{new HashMap(), new HashMap(), new HashMap()});
            return true;
        } else {
            return false;
        }
    }

    public boolean removeVertex(V vertex)
    {
        if (!containsVertex(vertex))
            return false;
        
        // copy to avoid concurrent modification in removeEdge
        Collection incident = new ArrayList(getIncidentEdges(vertex));
        
        for (E edge : incident)
            removeEdge(edge);
        
        vertex_maps.remove(vertex);
        
        return true;
    }

    public boolean removeEdge(E edge)
    {
        if (!containsEdge(edge)) 
            return false;
        
        Pair endpoints = getEndpoints(edge);
        V v1 = endpoints.getFirst();
        V v2 = endpoints.getSecond();
        
        // remove edge from incident vertices' adjacency maps
        if (getEdgeType(edge) == EdgeType.DIRECTED)
        {
            vertex_maps.get(v1)[OUTGOING].remove(v2);
            vertex_maps.get(v2)[INCOMING].remove(v1);
            directed_edges.remove(edge);
        }
        else
        {
            vertex_maps.get(v1)[INCIDENT].remove(v2);
            vertex_maps.get(v2)[INCIDENT].remove(v1);
            undirected_edges.remove(edge);
        }

        return true;
    }
    
    public int getEdgeCount(EdgeType edge_type)
    {
        if (edge_type == EdgeType.DIRECTED)
            return directed_edges.size();
        if (edge_type == EdgeType.UNDIRECTED)
            return undirected_edges.size();
        return 0;
    }

	public EdgeType getDefaultEdgeType() 
	{
		return EdgeType.UNDIRECTED;
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy