net.sf.saxon.expr.UserFunctionCall Maven / Gradle / Ivy
Show all versions of Saxon-HE Show documentation
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2018-2022 Saxonica Limited
// This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package net.sf.saxon.expr;
import net.sf.saxon.event.Outputter;
import net.sf.saxon.expr.instruct.Block;
import net.sf.saxon.expr.instruct.UserFunction;
import net.sf.saxon.expr.parser.*;
import net.sf.saxon.om.*;
import net.sf.saxon.trace.ExpressionPresenter;
import net.sf.saxon.trans.*;
import net.sf.saxon.type.AnyItemType;
import net.sf.saxon.type.ItemType;
import net.sf.saxon.type.UType;
import net.sf.saxon.value.Cardinality;
import net.sf.saxon.value.EmptySequence;
import net.sf.saxon.value.SequenceType;
import net.sf.saxon.value.Whitespace;
import java.util.ArrayList;
import java.util.List;
/**
* This class represents a call to a user-defined function in the stylesheet or query.
*/
public class UserFunctionCall extends FunctionCall implements UserFunctionResolvable, ComponentInvocation, ContextOriginator {
private SequenceType staticType;
private UserFunction function;
private int bindingSlot = -1;
private int tailCall = NOT_TAIL_CALL;
private StructuredQName name;
public boolean isBeingInlined() {
return beingInlined;
}
public void setBeingInlined(boolean beingInlined) {
this.beingInlined = beingInlined;
}
private boolean beingInlined = false;
/*@Nullable*/ private Evaluator[] argumentEvaluators = null;
public static final int NOT_TAIL_CALL = 0;
public static final int FOREIGN_TAIL_CALL = 1;
public static final int SELF_TAIL_CALL = 2;
/**
* Create a function call to a user-written function in a query or stylesheet
*/
public UserFunctionCall() {
}
/**
* Set the name of the function being called
*
* @param name the name of the function
*/
public final void setFunctionName(StructuredQName name) {
this.name = name;
}
/**
* Set the static type
*
* @param type the static type of the result of the function call
*/
public void setStaticType(SequenceType type) {
staticType = type;
}
/**
* Create the reference to the function to be called
*
* @param compiledFunction the function being called
*/
@Override
public void setFunction(UserFunction compiledFunction) {
function = compiledFunction;
}
/**
* Set the binding slot to be used. This is the offset within the binding vector of the containing
* component where the actual target template is to be found. The target function is not held directly
* in the UserFunctionCall expression itself because it can be overridden in a using package.
*
* @param slot the offset in the binding vector of the containing package where the target template
* can be found.
*/
@Override
public void setBindingSlot(int slot) {
this.bindingSlot = slot;
}
/**
* Get the binding slot to be used. This is the offset within the binding vector of the containing
* component where the actual target template is to be found.
*
* @return the offset in the binding vector of the containing package where the target template
* can be found.
*/
@Override
public int getBindingSlot() {
return bindingSlot;
}
/**
* Get the function that is being called by this function call. This is the provisional
* binding: the actual function might be an override of this one.
*
* @return the function being called
*/
public UserFunction getFunction() {
return function;
}
@Override
public Component getFixedTarget() {
Visibility v = function.getDeclaringComponent().getVisibility();
if (v == Visibility.PRIVATE || v == Visibility.FINAL) {
return function.getDeclaringComponent();
} else {
return null;
}
}
/**
* Determine whether this is a tail call (not necessarily a recursive tail call)
*
* @return true if this function call is a tail call
*/
public boolean isTailCall() {
return tailCall != NOT_TAIL_CALL;
}
public boolean isRecursiveTailCall() {
return tailCall == SELF_TAIL_CALL;
}
/**
* Get the qualified of the function being called
*
* @return the qualified name
*/
@Override
public final StructuredQName getFunctionName() {
if (name == null) {
return function.getFunctionName();
} else {
return name;
}
}
@Override
public SymbolicName getSymbolicName() {
return new SymbolicName.F(getFunctionName(), getArity());
}
public Component getTarget() {
return function.getDeclaringComponent();
}
/**
* Set the argument evaluation modes
*
* @param evalModes the argument evaluation modes to be used
*/
public void setArgumentEvaluators(Evaluator[] evalModes) {
argumentEvaluators = evalModes;
}
private static final int UNHANDLED_DEPENDENCIES =
StaticProperty.DEPENDS_ON_POSITION | StaticProperty.DEPENDS_ON_LAST |
StaticProperty.DEPENDS_ON_XSLT_CONTEXT | StaticProperty.DEPENDS_ON_USER_FUNCTIONS;
public void allocateArgumentEvaluators() {
argumentEvaluators = new Evaluator[getArity()];
int i=0;
for (Operand o : operands()) {
Expression arg = o.getChildExpression();
SequenceType required = function.getArgumentType(i);
int cardinality = required.getCardinality();
if (i == 0 && function.getDeclaredStreamability().isConsuming()) {
argumentEvaluators[i] = Evaluator.StreamingArgument.INSTANCE;
} else if (function.getParameterDefinitions()[i].isIndexedVariable()) {
argumentEvaluators[i] = Evaluator.MakeIndexedVariable.INSTANCE;
} else {
if (arg instanceof Literal) {
argumentEvaluators[i] = Evaluator.Literal.INSTANCE;
} else if (arg instanceof VariableReference) {
argumentEvaluators[i] = Evaluator.Variable.INSTANCE;
} else if (cardinality == StaticProperty.EXACTLY_ONE) {
argumentEvaluators[i] = Evaluator.SingleItem.INSTANCE;
} else if ((arg.getDependencies() & UNHANDLED_DEPENDENCIES) != 0) {
// If the argument contains a call to a user-defined function, then it might be a recursive call.
// It's better to evaluate it now, rather than waiting until we are on a new stack frame, as
// that can blow the stack if done repeatedly. (See test func42)
// If the argument contains calls to position(), last(), regex-group(), current-group(),
// current-merge-group(), etc, then in general we can't save the values in a Closure
// so we need to evaluate the argument eagerly. (Tests position-0103, merge-096).
argumentEvaluators[i] = new Evaluator.EagerSequence();
} else if (!Cardinality.allowsMany(arg.getCardinality()) && arg.getCost() < 20) {
// the argument is cheap to evaluate and doesn't use much memory...
argumentEvaluators[i] = new Evaluator.EagerSequence();
} else if (cardinality == StaticProperty.ALLOWS_ZERO_OR_ONE) {
argumentEvaluators[i] = Evaluator.OptionalItem.INSTANCE;
} else if (arg instanceof Block && ((Block) arg).isCandidateForSharedAppend()) {
// If the expression is a Block, that is, it is appending a value to a sequence,
// then we have the opportunity to use a shared list underpinning the old value and
// the new. This takes precedence over lazy evaluation (it would be possible to do this
// lazily, but more difficult). We currently do this for any Block that has a variable
// reference as one of its subexpressions. The most common case is that the first argument is a reference
// to an argument of recursive function, where the recursive function returns the result of
// appending to the sequence.
argumentEvaluators[i] = Evaluator.SharedAppend.INSTANCE;
} else {
argumentEvaluators[i] = Evaluator.MemoClosureEvaluator.INSTANCE;
}
}
i++;
}
}
public Evaluator[] getArgumentEvaluators() {
return argumentEvaluators;
}
/**
* Pre-evaluate a function at compile time. This version of the method suppresses
* early evaluation by doing nothing.
*
* @param visitor an expression visitor
*/
@Override
public Expression preEvaluate(ExpressionVisitor visitor) {
return this;
}
/**
* Determine the data type of the expression, if possible
*
* @return Type.ITEM (meaning not known in advance)
*/
/*@NotNull*/
@Override
public ItemType getItemType() {
if (staticType == null) {
// the actual type is not known yet, so we return an approximation
return AnyItemType.getInstance();
} else {
return staticType.getPrimaryType();
}
}
/**
* Get the static type of the expression as a UType, following precisely the type
* inference rules defined in the XSLT 3.0 specification.
*
* @param contextItemType the static type of the context item
* @return the static item type of the expression according to the XSLT 3.0 defined rules
*/
@Override
public UType getStaticUType(UType contextItemType) {
UserFunction f = getFunction();
if (f == null) {
// Happens when called during parsing
return UType.ANY;
}
return f.getResultType().getPrimaryType().getUType();
}
@Override
public int getIntrinsicDependencies() {
return StaticProperty.DEPENDS_ON_USER_FUNCTIONS;
}
/**
* Determine whether this is an updating expression as defined in the XQuery update specification
*
* @return true if this is an updating expression
*/
@Override
public boolean isUpdatingExpression() {
return function.isUpdating();
}
/**
* Compute the special properties of this expression. These properties are denoted by a bit-significant
* integer, possible values are in class {@link net.sf.saxon.expr.StaticProperty}. The "special" properties are properties
* other than cardinality and dependencies, and most of them relate to properties of node sequences, for
* example whether the nodes are in document order.
*
* @return the special properties, as a bit-significant integer
*/
@Override
protected int computeSpecialProperties() {
// Inherit the properties of the function being called if possible. But we have to prevent
// looping when the function is recursive. For safety, we only consider the properties of the
// function body if it contains no further function calls. Also, we can only do this safely if
// the function is private or final
if (function == null) {
return super.computeSpecialProperties();
} else if (function.getBody() != null &&
(function.getDeclaredVisibility() == Visibility.PRIVATE || function.getDeclaredVisibility() == Visibility.FINAL)) {
int props;
List calledFunctions = new ArrayList<>();
ExpressionTool.gatherCalledFunctions(function.getBody(), calledFunctions);
if (calledFunctions.isEmpty()) {
props = function.getBody().getSpecialProperties();
} else {
props = super.computeSpecialProperties();
}
if (function.getDeterminism() != UserFunction.Determinism.PROACTIVE) {
props |= StaticProperty.NO_NODES_NEWLY_CREATED;
}
return props;
} else {
return super.computeSpecialProperties();
}
}
/**
* Copy an expression. This makes a deep copy.
*
* @param rebindings variable bindings that need to be changed
* @return the copy of the original expression
*/
/*@NotNull*/
@Override
public Expression copy(RebindingMap rebindings) {
if (function == null) {
// not bound yet, we have no way to register the new copy with the XSLFunction
throw new UnsupportedOperationException("UserFunctionCall.copy()");
}
UserFunctionCall ufc = new UserFunctionCall();
ufc.setFunction(function);
ufc.setStaticType(staticType);
int numArgs = getArity();
Expression[] a2 = new Expression[numArgs];
for (int i = 0; i < numArgs; i++) {
a2[i] = getArg(i).copy(rebindings);
}
ufc.setArguments(a2);
ExpressionTool.copyLocationInfo(this, ufc);
return ufc;
}
/**
* Determine the cardinality of the result
*/
@Override
protected int computeCardinality() {
if (staticType == null) {
// the actual type is not known yet, so we return an approximation
return StaticProperty.ALLOWS_ZERO_OR_MORE;
} else {
return staticType.getCardinality();
}
}
/*@NotNull*/
@Override
public Expression typeCheck(ExpressionVisitor visitor, ContextItemStaticInfo contextInfo) throws XPathException {
Expression e = super.typeCheck(visitor, contextInfo);
if (e != this) {
return e;
}
if (function != null) {
checkFunctionCall(function, visitor);
if (staticType == null || staticType == SequenceType.ANY_SEQUENCE) {
// try to get a better type
staticType = function.getResultType();
}
}
return this;
}
/*@NotNull*/
@Override
public Expression optimize(ExpressionVisitor visitor, ContextItemStaticInfo contextItemType) throws XPathException {
Expression e = super.optimize(visitor, contextItemType);
if (e == this && function != null) {
return visitor.obtainOptimizer().tryInlineFunctionCall(
this, visitor, contextItemType);
}
return e;
}
/**
* Reset the static properties of the expression to -1, so that they have to be recomputed
* next time they are used.
*/
@Override
public void resetLocalStaticProperties() {
super.resetLocalStaticProperties();
argumentEvaluators = null;
}
/**
* Add a representation of this expression to a PathMap. The PathMap captures a map of the nodes visited
* by an expression in a source tree.
* The default implementation of this method assumes that an expression does no navigation other than
* the navigation done by evaluating its subexpressions, and that the subexpressions are evaluated in the
* same context as the containing expression. The method must be overridden for any expression
* where these assumptions do not hold. For example, implementations exist for AxisExpression, ParentExpression,
* and RootExpression (because they perform navigation), and for the doc(), document(), and collection()
* functions because they create a new navigation root. Implementations also exist for PathExpression and
* FilterExpression because they have subexpressions that are evaluated in a different context from the
* calling expression.
*
* @param pathMap the PathMap to which the expression should be added
* @param pathMapNodeSet the PathMapNodeSet to which the paths embodied in this expression should be added
* @return the pathMapNode representing the focus established by this expression, in the case where this
* expression is the first operand of a path expression or filter expression. For an expression that does
* navigation, it represents the end of the arc in the path map that describes the navigation route. For other
* expressions, it is the same as the input pathMapNode.
*/
@Override
public PathMap.PathMapNodeSet addToPathMap(PathMap pathMap, PathMap.PathMapNodeSet pathMapNodeSet) {
return addExternalFunctionCallToPathMap(pathMap, pathMapNodeSet);
}
/**
* Mark tail-recursive calls on stylesheet functions. This marks the function call as tailRecursive if
* if is a call to the containing function, and in this case it also returns "true" to the caller to indicate
* that a tail call was found.
*/
@Override
public int markTailFunctionCalls(StructuredQName qName, int arity) {
tailCall = getFunctionName().equals(qName) &&
arity == getArity() ? SELF_TAIL_CALL : FOREIGN_TAIL_CALL;
return tailCall;
}
@Override
public int getImplementationMethod() {
if (Cardinality.allowsMany(getCardinality())) {
return ITERATE_METHOD | PROCESS_METHOD;
} else {
return EVALUATE_METHOD;
}
}
/**
* Call the function, returning the value as an item. This method will be used
* only when the cardinality is zero or one. If the function is tail recursive,
* it returns an Object representing the arguments to the next (recursive) call
*/
@Override
public Item evaluateItem(XPathContext c) throws XPathException {
return callFunction(c).head();
}
/**
* Call the function, returning an iterator over the results. (But if the function is
* tail recursive, it returns an iterator over the arguments of the recursive call)
*/
/*@NotNull*/
@Override
public SequenceIterator iterate(XPathContext c) throws XPathException {
return callFunction(c).iterate();
}
/**
* Evaluate an updating expression, adding the results to a Pending Update List.
* The default implementation of this method, which is used for non-updating expressions,
* throws an UnsupportedOperationException
*
* @param context the XPath dynamic evaluation context
* @param pul the pending update list to which the results should be written
*/
@Override
public void evaluatePendingUpdates(XPathContext context, PendingUpdateList pul) throws XPathException {
Sequence[] actualArgs = evaluateArguments(context);
XPathContextMajor c2 = context.newCleanContext();
c2.setOrigin(this);
function.callUpdating(actualArgs, c2, pul);
}
private static final int depth = 0;
/**
* This is the method that actually does the function call (in pull mode)
*
* @param context the dynamic context
* @return the result of the function
* @throws XPathException if dynamic errors occur
*/
private Sequence callFunction(XPathContext context) throws XPathException {
UserFunction targetFunction;
Sequence[] actualArgs = evaluateArguments(context);
XPathContextMajor c2;
if (isTailCall()) {
requestTailCall(context, actualArgs);
return EmptySequence.getInstance();
}
if (bindingSlot >= 0) {
Component target = getTargetComponent(context);
if (target.isHiddenAbstractComponent()) {
throw new XPathException("Cannot call an abstract function (" +
name.getDisplayName() +
") with no implementation", "XTDE3052");
}
targetFunction = (UserFunction) target.getActor();
c2 = targetFunction.makeNewContext(context, this);
c2.setCurrentComponent(target);
c2.setOrigin(this);
} else {
targetFunction = function;
c2 = targetFunction.makeNewContext(context, this);
c2.setOrigin(this);
}
try {
return targetFunction.call(c2, actualArgs);
} catch (UncheckedXPathException e) {
XPathException xe = e.getXPathException();
xe.maybeSetLocation(getLocation());
throw xe;
} catch (StackOverflowError err) {
throw new XPathException.StackOverflow("Too many nested function calls. May be due to infinite recursion",
SaxonErrorCode.SXLM0001, getLocation());
}
}
private void requestTailCall(XPathContext context, Sequence[] actualArgs) throws XPathException {
if (bindingSlot >= 0) {
TailCallLoop.TailCallComponent info = new TailCallLoop.TailCallComponent();
Component target = getTargetComponent(context);
info.component = target;
info.function = (UserFunction) target.getActor();
if (target.isHiddenAbstractComponent()) {
throw new XPathException("Cannot call an abstract function (" +
name.getDisplayName() +
") with no implementation", "XTDE3052");
}
((XPathContextMajor) context).requestTailCall(info, actualArgs);
} else {
TailCallLoop.TailCallFunction info = new TailCallLoop.TailCallFunction();
info.function = function;
((XPathContextMajor) context).requestTailCall(info, actualArgs);
}
}
/**
* Process the function call in push mode
*
*
* @param output the destination for the result
* @param context the XPath dynamic context
* @throws XPathException if a dynamic error occurs
*/
@Override
public void process(Outputter output, XPathContext context) throws XPathException {
Sequence[] actualArgs = evaluateArguments(context);
if (isTailCall()) {
requestTailCall(context, actualArgs);
return;
}
if (bindingSlot >= 0) {
Component target = getTargetComponent(context);
UserFunction targetFunction = (UserFunction) target.getActor();
if (target.getVisibility() == Visibility.ABSTRACT) {
throw new XPathException("Cannot call a function defined with visibility=abstract", "XTDE3052");
}
XPathContextMajor c2 = targetFunction.makeNewContext(context, this);
c2.setCurrentComponent(target);
c2.setOrigin(this);
targetFunction.process(c2, actualArgs, output);
} else {
XPathContextMajor c2 = function.makeNewContext(context, this);
c2.setOrigin(this);
function.process(c2, actualArgs, output);
}
}
public Component getTargetComponent(XPathContext context) {
if (bindingSlot == -1) {
// fallback for non-package code
return function.getDeclaringComponent();
} else {
return context.getTargetComponent(bindingSlot);
}
}
@Override
public UserFunction getTargetFunction(XPathContext context) {
return (UserFunction) getTargetComponent(context).getActor();
}
@Override
public Sequence[] evaluateArguments(XPathContext c) throws XPathException {
return evaluateArguments(c, false);
}
public Sequence[] evaluateArguments(XPathContext c, boolean streamed) throws XPathException {
int numArgs = getArity();
Sequence[] actualArgs = SequenceTool.makeSequenceArray(numArgs);
synchronized(this) {
if (argumentEvaluators == null) {
// should have been done at compile time
allocateArgumentEvaluators();
}
}
for (int i = 0; i < numArgs; i++) {
Evaluator eval = argumentEvaluators[i];
if (eval == null || eval == Evaluator.StreamingArgument.INSTANCE && !streamed) {
eval = Evaluator.EagerSequence.INSTANCE;
}
actualArgs[i] = eval.evaluate(getArg(i), c);
if (actualArgs[i] == null) {
actualArgs[i] = EmptySequence.getInstance();
}
}
return actualArgs;
}
/**
* Diagnostic print of expression structure. The abstract expression tree
* is written to the supplied output destination.
*/
@Override
public void export(ExpressionPresenter out) throws XPathException {
out.startElement("ufCall", this);
if (getFunctionName() != null) {
out.emitAttribute("name", getFunctionName());
out.emitAttribute("tailCall",
tailCall == NOT_TAIL_CALL ? "false" : tailCall == SELF_TAIL_CALL ? "self" : "foreign");
}
out.emitAttribute("bSlot", "" + getBindingSlot());
if (argumentEvaluators != null && getArity() > 0) {
StringBuilder fsb = new StringBuilder(64);
for (Evaluator e : argumentEvaluators) {
fsb.append(e.getCode() + " ");
}
out.emitAttribute("eval", Whitespace.trim(fsb.toString()));
}
for (Operand o : operands()) {
o.getChildExpression().export(out);
}
if (getFunctionName() == null) {
out.setChildRole("inline");
function.getBody().export(out);
out.endElement();
}
out.endElement();
}
/**
* Get a name identifying the kind of expression, in terms meaningful to a user.
*
* @return a name identifying the kind of expression, in terms meaningful to a user.
* The name will always be in the form of a lexical XML QName, and should match the name used
* in explain() output displaying the expression.
*/
@Override
public String getExpressionName() {
return "userFunctionCall";
}
@Override
public Object getProperty(String name) {
if (name.equals("target")) {
return function;
}
return super.getProperty(name);
}
@Override
public StructuredQName getObjectName() {
return getFunctionName();
}
}