net.snowflake.ingest.streaming.internal.DataValidationUtil Maven / Gradle / Ivy
/*
* Copyright (c) 2021 Snowflake Computing Inc. All rights reserved.
*/
package net.snowflake.ingest.streaming.internal;
import static net.snowflake.ingest.streaming.internal.BinaryStringUtils.unicodeCharactersCount;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.module.SimpleModule;
import com.fasterxml.jackson.databind.ser.std.ToStringSerializer;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.nio.charset.StandardCharsets;
import java.time.Instant;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.LocalTime;
import java.time.OffsetDateTime;
import java.time.OffsetTime;
import java.time.ZoneId;
import java.time.ZoneOffset;
import java.time.ZonedDateTime;
import java.time.format.DateTimeParseException;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Set;
import java.util.function.Supplier;
import net.snowflake.client.jdbc.internal.google.common.collect.Sets;
import net.snowflake.client.jdbc.internal.snowflake.common.core.SnowflakeDateTimeFormat;
import net.snowflake.client.jdbc.internal.snowflake.common.util.Power10;
import net.snowflake.ingest.streaming.internal.serialization.ByteArraySerializer;
import net.snowflake.ingest.streaming.internal.serialization.ZonedDateTimeSerializer;
import net.snowflake.ingest.utils.ErrorCode;
import net.snowflake.ingest.utils.SFException;
import org.apache.commons.codec.DecoderException;
import org.apache.commons.codec.binary.Hex;
/** Utility class for parsing and validating inputs based on Snowflake types */
class DataValidationUtil {
/**
* Seconds limit used for integer-stored timestamp scale guessing. Value needs to be aligned with
* the value from {@link SnowflakeDateTimeFormat#parse}
*/
private static final long SECONDS_LIMIT_FOR_EPOCH = 31536000000L;
/**
* Milliseconds limit used for integer-stored timestamp scale guessing. Value needs to be aligned
* with the value from {@link SnowflakeDateTimeFormat#parse}
*/
private static final long MILLISECONDS_LIMIT_FOR_EPOCH = SECONDS_LIMIT_FOR_EPOCH * 1000L;
/**
* Microseconds limit used for integer-stored timestamp scale guessing. Value needs to be aligned
* with the value from {@link SnowflakeDateTimeFormat#parse}
*/
private static final long MICROSECONDS_LIMIT_FOR_EPOCH = SECONDS_LIMIT_FOR_EPOCH * 1000000L;
public static final int BYTES_8_MB = 8 * 1024 * 1024;
public static final int BYTES_16_MB = 2 * BYTES_8_MB;
// TODO SNOW-664249: There is a few-byte mismatch between the value sent by the user and its
// server-side representation. Validation leaves a small buffer for this difference.
static final int MAX_SEMI_STRUCTURED_LENGTH = BYTES_16_MB - 64;
private static final ObjectMapper objectMapper = new ObjectMapper();
// The version of Jackson we are using does not support serialization of date objects from the
// java.time package. Here we define a module with custom java.time serializers. Additionally, we
// define custom serializer for byte[] because the Jackson default is to serialize it as
// base64-encoded string, and we would like to serialize it as JSON array of numbers.
static {
SimpleModule module = new SimpleModule();
module.addSerializer(byte[].class, new ByteArraySerializer());
module.addSerializer(ZonedDateTime.class, new ZonedDateTimeSerializer());
module.addSerializer(LocalTime.class, new ToStringSerializer());
module.addSerializer(OffsetTime.class, new ToStringSerializer());
module.addSerializer(LocalDate.class, new ToStringSerializer());
module.addSerializer(LocalDateTime.class, new ToStringSerializer());
module.addSerializer(OffsetDateTime.class, new ToStringSerializer());
objectMapper.registerModule(module);
}
// Caching the powers of 10 that are used for checking the range of numbers because computing them
// on-demand is expensive.
private static final BigDecimal[] POWER_10 = makePower10Table();
private static BigDecimal[] makePower10Table() {
BigDecimal[] power10 = new BigDecimal[Power10.sb16Size];
for (int i = 0; i < Power10.sb16Size; i++) {
power10[i] = new BigDecimal(Power10.sb16Table[i]);
}
return power10;
}
/**
* Validates and parses input as JSON. All types in the object tree must be valid variant types,
* see {@link DataValidationUtil#isAllowedSemiStructuredType}.
*
* @param input Object to validate
* @return JSON tree representing the input
*/
private static JsonNode validateAndParseSemiStructuredAsJsonTree(
String columnName, Object input, String snowflakeType, final long insertRowIndex) {
if (input instanceof String) {
String stringInput = (String) input;
verifyValidUtf8(stringInput, columnName, snowflakeType, insertRowIndex);
try {
return objectMapper.readTree(stringInput);
} catch (JsonProcessingException e) {
throw valueFormatNotAllowedException(
columnName, snowflakeType, "Not a valid JSON", insertRowIndex);
}
} else if (isAllowedSemiStructuredType(input)) {
return objectMapper.valueToTree(input);
}
throw typeNotAllowedException(
columnName,
input.getClass(),
snowflakeType,
new String[] {
"String",
"Primitive data types and their arrays",
"java.time.*",
"List",
"Map",
"T[]"
},
insertRowIndex);
}
/**
* Validates and parses input as JSON. All types in the object tree must be valid variant types,
* see {@link DataValidationUtil#isAllowedSemiStructuredType}.
*
* @param input Object to validate
* @param insertRowIndex
* @return JSON string representing the input
*/
static String validateAndParseVariant(String columnName, Object input, long insertRowIndex) {
JsonNode node =
validateAndParseSemiStructuredAsJsonTree(columnName, input, "VARIANT", insertRowIndex);
// Missing nodes are not valid json, ingest them as NULL instead
if (node.isMissingNode()) {
return null;
}
String output = node.toString();
int stringLength = output.getBytes(StandardCharsets.UTF_8).length;
if (stringLength > MAX_SEMI_STRUCTURED_LENGTH) {
throw valueFormatNotAllowedException(
columnName,
"VARIANT",
String.format(
"Variant too long: length=%d maxLength=%d", stringLength, MAX_SEMI_STRUCTURED_LENGTH),
insertRowIndex);
}
return output;
}
/**
* Validates that passed object is allowed data type for semi-structured columns (i.e. VARIANT,
* ARRAY, OBJECT). For non-trivial types like maps, arrays or lists, it recursively traverses the
* object tree and validates that all types in the tree are also allowed. Allowed Java types:
*
*
* - primitive types (int, long, boolean, ...)
*
- String
*
- BigInteger
*
- BigDecimal
*
- LocalTime
*
- OffsetTime
*
- LocalDate
*
- LocalDateTime
*
- OffsetDateTime
*
- ZonedDateTime
*
- Map
where T is an allowed semi-structured type
* - List
where T is an allowed semi-structured type
* - primitive arrays (char[], int[], ...)
*
- T[] where T is an allowed semi-structured type
*
*
* @param o Object to validate
* @return If the passed object is allowed for ingestion into semi-structured column
*/
static boolean isAllowedSemiStructuredType(Object o) {
// Allow null
if (o == null) {
return true;
}
// Allow string
if (o instanceof String) {
return true;
}
// Allow all primitive Java data types
if (o instanceof Long
|| o instanceof Integer
|| o instanceof Short
|| o instanceof Byte
|| o instanceof Float
|| o instanceof Double
|| o instanceof Boolean
|| o instanceof Character) {
return true;
}
// Allow BigInteger and BigDecimal
if (o instanceof BigInteger || o instanceof BigDecimal) {
return true;
}
// Allow supported types from java.time package
if (o instanceof java.time.LocalTime
|| o instanceof OffsetTime
|| o instanceof LocalDate
|| o instanceof LocalDateTime
|| o instanceof ZonedDateTime
|| o instanceof OffsetDateTime) {
return true;
}
// Map is allowed, as long as T is also a supported semi-structured type
if (o instanceof Map) {
boolean allKeysAreStrings =
((Map, ?>) o).keySet().stream().allMatch(x -> x instanceof String);
if (!allKeysAreStrings) {
return false;
}
boolean allValuesAreAllowed =
((Map, ?>) o)
.values().stream().allMatch(DataValidationUtil::isAllowedSemiStructuredType);
return allValuesAreAllowed;
}
// Allow arrays of primitive data types
if (o instanceof byte[]
|| o instanceof short[]
|| o instanceof int[]
|| o instanceof long[]
|| o instanceof float[]
|| o instanceof double[]
|| o instanceof boolean[]
|| o instanceof char[]) {
return true;
}
// Allow arrays of allowed semi-structured objects
if (o.getClass().isArray()) {
return Arrays.stream((Object[]) o).allMatch(DataValidationUtil::isAllowedSemiStructuredType);
}
// Allow lists consisting of allowed semi-structured objects
if (o instanceof List) {
return ((List>) o).stream().allMatch(DataValidationUtil::isAllowedSemiStructuredType);
}
// If nothing matches, reject the input
return false;
}
/**
* Validates and parses JSON array. Non-array types are converted into single-element arrays. All
* types in the array tree must be valid variant types, see {@link
* DataValidationUtil#isAllowedSemiStructuredType}.
*
* @param input Object to validate
* @param insertRowIndex
* @return JSON array representing the input
*/
static String validateAndParseArray(String columnName, Object input, long insertRowIndex) {
JsonNode jsonNode =
validateAndParseSemiStructuredAsJsonTree(columnName, input, "ARRAY", insertRowIndex);
// Non-array values are ingested as single-element arrays, mimicking the Worksheets behavior
if (!jsonNode.isArray()) {
jsonNode = objectMapper.createArrayNode().add(jsonNode);
}
String output = jsonNode.toString();
// Throw an exception if the size is too large
int stringLength = output.getBytes(StandardCharsets.UTF_8).length;
if (stringLength > MAX_SEMI_STRUCTURED_LENGTH) {
throw valueFormatNotAllowedException(
columnName,
"ARRAY",
String.format(
"Array too large. length=%d maxLength=%d", stringLength, MAX_SEMI_STRUCTURED_LENGTH),
insertRowIndex);
}
return output;
}
/**
* Validates and parses JSON object. Input is rejected if the value does not represent JSON object
* (e.g. String '{}' or Map). All types in the object tree must be valid variant types,
* see {@link DataValidationUtil#isAllowedSemiStructuredType}.
*
* @param input Object to validate
* @param insertRowIndex
* @return JSON object representing the input
*/
static String validateAndParseObject(String columnName, Object input, long insertRowIndex) {
JsonNode jsonNode =
validateAndParseSemiStructuredAsJsonTree(columnName, input, "OBJECT", insertRowIndex);
if (!jsonNode.isObject()) {
throw valueFormatNotAllowedException(columnName, "OBJECT", "Not an object", insertRowIndex);
}
String output = jsonNode.toString();
// Throw an exception if the size is too large
int stringLength = output.getBytes(StandardCharsets.UTF_8).length;
if (stringLength > MAX_SEMI_STRUCTURED_LENGTH) {
throw valueFormatNotAllowedException(
columnName,
"OBJECT",
String.format(
"Object too large. length=%d maxLength=%d", stringLength, MAX_SEMI_STRUCTURED_LENGTH),
insertRowIndex);
}
return output;
}
/**
* Converts user input to offset date time, which is the canonical representation of dates and
* timestamps.
*/
private static OffsetDateTime inputToOffsetDateTime(
String columnName,
String typeName,
Object input,
ZoneId defaultTimezone,
final long insertRowIndex) {
if (input instanceof OffsetDateTime) {
return (OffsetDateTime) input;
}
if (input instanceof ZonedDateTime) {
return ((ZonedDateTime) input).toOffsetDateTime();
}
if (input instanceof LocalDateTime) {
return ((LocalDateTime) input).atZone(defaultTimezone).toOffsetDateTime();
}
if (input instanceof LocalDate) {
return ((LocalDate) input).atStartOfDay().atZone(defaultTimezone).toOffsetDateTime();
}
if (input instanceof Instant) {
// Just like integer-stored timestamps, instants are always interpreted in UTC
return ((Instant) input).atZone(ZoneOffset.UTC).toOffsetDateTime();
}
if (input instanceof String) {
String stringInput = ((String) input).trim();
{
// First, try to parse ZonedDateTime
ZonedDateTime zoned = catchParsingError(() -> ZonedDateTime.parse(stringInput));
if (zoned != null) {
return zoned.toOffsetDateTime();
}
}
{
// Next, try to parse OffsetDateTime
OffsetDateTime offset = catchParsingError(() -> OffsetDateTime.parse(stringInput));
if (offset != null) {
return offset;
}
}
{
// Alternatively, try to parse LocalDateTime
LocalDateTime localDateTime = catchParsingError(() -> LocalDateTime.parse(stringInput));
if (localDateTime != null) {
return localDateTime.atZone(defaultTimezone).toOffsetDateTime();
}
}
{
// Alternatively, try to parse LocalDate
LocalDate localDate = catchParsingError(() -> LocalDate.parse(stringInput));
if (localDate != null) {
return localDate.atStartOfDay().atZone(defaultTimezone).toOffsetDateTime();
}
}
{
// Alternatively, try to parse integer-stored timestamp
// Just like in Snowflake, integer-stored timestamps are always in UTC
Instant instant = catchParsingError(() -> parseInstantGuessScale(stringInput));
if (instant != null) {
return instant.atOffset(ZoneOffset.UTC);
}
}
// Couldn't parse anything, throw an exception
throw valueFormatNotAllowedException(
columnName,
typeName,
"Not a valid value, see"
+ " https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-overview"
+ " for the list of supported formats",
insertRowIndex);
}
// Type is not supported, throw an exception
throw typeNotAllowedException(
columnName,
input.getClass(),
typeName,
new String[] {"String", "LocalDate", "LocalDateTime", "ZonedDateTime", "OffsetDateTime"},
insertRowIndex);
}
private static T catchParsingError(Supplier op) {
try {
return op.get();
} catch (DateTimeParseException | NumberFormatException e) {
return null;
}
}
/**
* Validates and parses input for TIMESTAMP_NTZ, TIMESTAMP_LTZ and TIMEATAMP_TZ Snowflake types.
* Allowed Java types:
*
*
* - String
*
- LocalDate
*
- LocalDateTime
*
- OffsetDateTime
*
- ZonedDateTime
*
*
* @param columnName Column name, used in validation error messages
* @param input String date in valid format, seconds past the epoch or java.time.* object. Accepts
* fractional seconds with precision up to the column's scale
* @param scale decimal scale of timestamp 16 byte integer
* @param defaultTimezone Input, which does not carry timezone information is going to be
* interpreted in the default timezone.
* @param trimTimezone Whether timezone information should be removed from the resulting date,
* should be true for TIMESTAMP_NTZ columns.
* @param insertRowIndex
* @return TimestampWrapper
*/
static TimestampWrapper validateAndParseTimestamp(
String columnName,
Object input,
int scale,
ZoneId defaultTimezone,
boolean trimTimezone,
long insertRowIndex) {
OffsetDateTime offsetDateTime =
inputToOffsetDateTime(columnName, "TIMESTAMP", input, defaultTimezone, insertRowIndex);
if (trimTimezone) {
offsetDateTime = offsetDateTime.withOffsetSameLocal(ZoneOffset.UTC);
}
if (offsetDateTime.getYear() < 1 || offsetDateTime.getYear() > 9999) {
throw new SFException(
ErrorCode.INVALID_VALUE_ROW,
String.format(
"Timestamp out of representable inclusive range of years between 1 and 9999,"
+ " rowIndex:%d",
insertRowIndex));
}
return new TimestampWrapper(offsetDateTime, scale);
}
/**
* Converts input to string, validates that length is less than max allowed string size
* https://docs.snowflake.com/en/sql-reference/data-types-text.html#varchar. Allowed data types:
*
*
* - String
*
- Number
*
- boolean
*
- char
*
*
* @param input Object to validate and parse to String
* @param maxLengthOptional Maximum allowed length of the output String, if empty then uses
* maximum allowed by Snowflake
* (https://docs.snowflake.com/en/sql-reference/data-types-text.html#varchar)
* @param insertRowIndex
*/
static String validateAndParseString(
String columnName, Object input, Optional maxLengthOptional, long insertRowIndex) {
String output;
if (input instanceof String) {
output = (String) input;
verifyValidUtf8(output, columnName, "STRING", insertRowIndex);
} else if (input instanceof Number) {
output = new BigDecimal(input.toString()).stripTrailingZeros().toPlainString();
} else if (input instanceof Boolean || input instanceof Character) {
output = input.toString();
} else {
throw typeNotAllowedException(
columnName,
input.getClass(),
"STRING",
new String[] {"String", "Number", "boolean", "char"},
insertRowIndex);
}
byte[] utf8Bytes = output.getBytes(StandardCharsets.UTF_8);
// Strings can never be larger than 16MB
if (utf8Bytes.length > BYTES_16_MB) {
throw valueFormatNotAllowedException(
columnName,
"STRING",
String.format(
"String too long: length=%d bytes maxLength=%d bytes", utf8Bytes.length, BYTES_16_MB),
insertRowIndex);
}
// If max allowed length is specified (e.g. VARCHAR(10)), the number of unicode characters must
// not exceed this value
maxLengthOptional.ifPresent(
maxAllowedCharacters -> {
int actualCharacters = unicodeCharactersCount(output);
if (actualCharacters > maxAllowedCharacters) {
throw valueFormatNotAllowedException(
columnName,
"STRING",
String.format(
"String too long: length=%d characters maxLength=%d characters",
actualCharacters, maxAllowedCharacters),
insertRowIndex);
}
});
return output;
}
/**
* Returns a BigDecimal representation of the input. Strings of the form "1.23E4" will be treated
* as being written in * scientific notation (e.g. 1.23 * 10^4). Does not perform any size
* validation. Allowed Java types:
* byte, short, int, long
* float, double
* BigInteger, BigDecimal
* String
*/
static BigDecimal validateAndParseBigDecimal(
String columnName, Object input, long insertRowIndex) {
if (input instanceof BigDecimal) {
return (BigDecimal) input;
} else if (input instanceof BigInteger) {
return new BigDecimal((BigInteger) input);
} else if (input instanceof Byte
|| input instanceof Short
|| input instanceof Integer
|| input instanceof Long) {
return BigDecimal.valueOf(((Number) input).longValue());
} else if (input instanceof Float || input instanceof Double) {
return BigDecimal.valueOf(((Number) input).doubleValue());
} else if (input instanceof String) {
try {
final String stringInput = ((String) input).trim();
return new BigDecimal(stringInput);
} catch (NumberFormatException e) {
throw valueFormatNotAllowedException(
columnName, "NUMBER", "Not a valid number", insertRowIndex);
}
} else {
throw typeNotAllowedException(
columnName,
input.getClass(),
"NUMBER",
new String[] {
"int", "long", "byte", "short", "float", "double", "BigDecimal", "BigInteger", "String"
},
insertRowIndex);
}
}
/**
* Returns the number of days between the epoch and the passed date. Allowed Java types:
*
*
* - String
*
- {@link LocalDate}
*
- {@link LocalDateTime}
*
- {@link OffsetDateTime}
*
- {@link ZonedDateTime}
*
- {@link Instant}
*
*/
static int validateAndParseDate(String columnName, Object input, long insertRowIndex) {
OffsetDateTime offsetDateTime =
inputToOffsetDateTime(columnName, "DATE", input, ZoneOffset.UTC, insertRowIndex);
if (offsetDateTime.getYear() < -9999 || offsetDateTime.getYear() > 9999) {
throw new SFException(
ErrorCode.INVALID_VALUE_ROW,
String.format(
"Date out of representable inclusive range of years between -9999 and 9999,"
+ " rowIndex:%d",
insertRowIndex));
}
return Math.toIntExact(offsetDateTime.toLocalDate().toEpochDay());
}
/**
* Validates input for data type BINARY. Allowed Java types:
*
*
* - byte[]
*
- String (hex-encoded)
*
*
* @param input Array to validate
* @param maxLengthOptional Max array length, defaults to 8MB, which is the max allowed length for
* BINARY column
* @param insertRowIndex
* @return Validated array
*/
static byte[] validateAndParseBinary(
String columnName, Object input, Optional maxLengthOptional, long insertRowIndex) {
byte[] output;
if (input instanceof byte[]) {
// byte[] is a mutable object, we need to create a defensive copy to protect against
// concurrent modifications of the array, which could lead to mismatch between data
// and metadata
byte[] originalInputArray = (byte[]) input;
output = new byte[originalInputArray.length];
System.arraycopy(originalInputArray, 0, output, 0, originalInputArray.length);
} else if (input instanceof String) {
try {
String stringInput = ((String) input).trim();
output = Hex.decodeHex(stringInput);
} catch (DecoderException e) {
throw valueFormatNotAllowedException(
columnName, "BINARY", "Not a valid hex string", insertRowIndex);
}
} else {
throw typeNotAllowedException(
columnName,
input.getClass(),
"BINARY",
new String[] {"byte[]", "String"},
insertRowIndex);
}
int maxLength = maxLengthOptional.orElse(BYTES_8_MB);
if (output.length > maxLength) {
throw valueFormatNotAllowedException(
columnName,
"BINARY",
String.format("Binary too long: length=%d maxLength=%d", output.length, maxLength),
insertRowIndex);
}
return output;
}
/**
* Returns the number of units since 00:00, depending on the scale (scale=0: seconds, scale=3:
* milliseconds, scale=9: nanoseconds). Allowed Java types:
*
*
* - String
*
- {@link LocalTime}
*
- {@link OffsetTime}
*
*/
static BigInteger validateAndParseTime(
String columnName, Object input, int scale, long insertRowIndex) {
if (input instanceof LocalTime) {
LocalTime localTime = (LocalTime) input;
return BigInteger.valueOf(localTime.toNanoOfDay()).divide(Power10.sb16Table[9 - scale]);
} else if (input instanceof OffsetTime) {
return validateAndParseTime(
columnName, ((OffsetTime) input).toLocalTime(), scale, insertRowIndex);
} else if (input instanceof String) {
String stringInput = ((String) input).trim();
{
// First, try to parse LocalTime
LocalTime localTime = catchParsingError(() -> LocalTime.parse(stringInput));
if (localTime != null) {
return validateAndParseTime(columnName, localTime, scale, insertRowIndex);
}
}
{
// Alternatively, try to parse OffsetTime
OffsetTime offsetTime = catchParsingError((() -> OffsetTime.parse(stringInput)));
if (offsetTime != null) {
return validateAndParseTime(columnName, offsetTime.toLocalTime(), scale, insertRowIndex);
}
}
{
// Alternatively, try to parse integer-stored time
Instant parsedInstant = catchParsingError(() -> parseInstantGuessScale(stringInput));
if (parsedInstant != null) {
return validateAndParseTime(
columnName,
LocalDateTime.ofInstant(parsedInstant, ZoneOffset.UTC).toLocalTime(),
scale,
insertRowIndex);
}
}
throw valueFormatNotAllowedException(
columnName,
"TIME",
"Not a valid time, see"
+ " https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-overview"
+ " for the list of supported formats",
insertRowIndex);
} else {
throw typeNotAllowedException(
columnName,
input.getClass(),
"TIME",
new String[] {"String", "LocalTime", "OffsetTime"},
insertRowIndex);
}
}
/**
* Attempts to parse integer-stored date from string input. Tries to guess the scale according to
* the rules documented at
* https://docs.snowflake.com/en/user-guide/date-time-input-output.html#auto-detection-of-integer-stored-date-time-and-timestamp-values.
*
* @param input String to parse, must represent a valid long
* @return Instant representing the input
* @throws NumberFormatException If the input in not a valid long
*/
private static Instant parseInstantGuessScale(String input) {
BigInteger epochNanos;
try {
long val = Long.parseLong(input);
if (val > -SECONDS_LIMIT_FOR_EPOCH && val < SECONDS_LIMIT_FOR_EPOCH) {
epochNanos = BigInteger.valueOf(val).multiply(Power10.sb16Table[9]);
} else if (val > -MILLISECONDS_LIMIT_FOR_EPOCH && val < MILLISECONDS_LIMIT_FOR_EPOCH) {
epochNanos = BigInteger.valueOf(val).multiply(Power10.sb16Table[6]);
} else if (val > -MICROSECONDS_LIMIT_FOR_EPOCH && val < MICROSECONDS_LIMIT_FOR_EPOCH) {
epochNanos = BigInteger.valueOf(val).multiply(Power10.sb16Table[3]);
} else {
epochNanos = BigInteger.valueOf(val);
}
} catch (NumberFormatException e) {
// The input is bigger than max long value, treat it as nano-seconds directly
epochNanos = new BigInteger(input);
}
return Instant.ofEpochSecond(
epochNanos.divide(Power10.sb16Table[9]).longValue(),
epochNanos.remainder(Power10.sb16Table[9]).longValue());
}
/**
* Converts input to double value. Allowed Java types:
*
*
* - Number
*
- String
*
*
* @param input
* @param insertRowIndex
*/
static double validateAndParseReal(String columnName, Object input, long insertRowIndex) {
if (input instanceof Float) {
return Double.parseDouble(input.toString());
} else if (input instanceof Number) {
return ((Number) input).doubleValue();
} else if (input instanceof String) {
String stringInput = ((String) input).trim();
try {
return Double.parseDouble(stringInput);
} catch (NumberFormatException err) {
stringInput = stringInput.toLowerCase();
switch (stringInput) {
case "nan":
return Double.NaN;
case "inf":
return Double.POSITIVE_INFINITY;
case "-inf":
return Double.NEGATIVE_INFINITY;
default:
throw valueFormatNotAllowedException(
columnName, "REAL", "Not a valid decimal number", insertRowIndex);
}
}
}
throw typeNotAllowedException(
columnName, input.getClass(), "REAL", new String[] {"Number", "String"}, insertRowIndex);
}
/**
* Validate and parse input to integer output, 1=true, 0=false. String values converted to boolean
* according to https://docs.snowflake.com/en/sql-reference/functions/to_boolean.html#usage-notes
* Allowed Java types:
*
*
* - boolean
*
- String
*
- java.lang.Number
*
*
* @param input Input to be converted
* @return 1 or 0 where 1=true, 0=false
*/
static int validateAndParseBoolean(String columnName, Object input, long insertRowIndex) {
if (input instanceof Boolean) {
return (boolean) input ? 1 : 0;
} else if (input instanceof Number) {
return new BigDecimal(input.toString()).compareTo(BigDecimal.ZERO) == 0 ? 0 : 1;
} else if (input instanceof String) {
return convertStringToBoolean(columnName, (String) input, insertRowIndex) ? 1 : 0;
}
throw typeNotAllowedException(
columnName,
input.getClass(),
"BOOLEAN",
new String[] {"boolean", "Number", "String"},
insertRowIndex);
}
static void checkValueInRange(
BigDecimal bigDecimalValue, int scale, int precision, final long insertRowIndex) {
BigDecimal comparand =
(precision >= scale) && (precision - scale) < POWER_10.length
? POWER_10[precision - scale]
: BigDecimal.TEN.pow(precision - scale);
if (bigDecimalValue.abs().compareTo(comparand) >= 0) {
throw new SFException(
ErrorCode.INVALID_FORMAT_ROW,
String.format(
"Number out of representable exclusive range of (-1e%s..1e%s), rowIndex:%d",
precision - scale, precision - scale, insertRowIndex));
}
}
static Set allowedBooleanStringsLowerCased =
Sets.newHashSet("1", "0", "yes", "no", "y", "n", "t", "f", "true", "false", "on", "off");
private static boolean convertStringToBoolean(
String columnName, String value, final long insertRowIndex) {
String normalizedInput = value.toLowerCase().trim();
if (!allowedBooleanStringsLowerCased.contains(normalizedInput)) {
throw valueFormatNotAllowedException(
columnName,
"BOOLEAN",
"Not a valid boolean, see"
+ " https://docs.snowflake.com/en/sql-reference/data-types-logical.html#conversion-to-boolean"
+ " for the list of supported formats",
insertRowIndex);
}
return "1".equals(normalizedInput)
|| "yes".equals(normalizedInput)
|| "y".equals(normalizedInput)
|| "t".equals(normalizedInput)
|| "true".equals(normalizedInput)
|| "on".equals(normalizedInput);
}
/**
* Create exception that a Java type cannot be ingested into a specific Snowflake column type
*
* @param javaType Java type failing the validation
* @param snowflakeType Target Snowflake column type
* @param allowedJavaTypes Java types supported for the Java type
*/
private static SFException typeNotAllowedException(
String columnName,
Class> javaType,
String snowflakeType,
String[] allowedJavaTypes,
final long insertRowIndex) {
return new SFException(
ErrorCode.INVALID_FORMAT_ROW,
String.format(
"Object of type %s cannot be ingested into Snowflake column %s of type %s, rowIndex:%d",
javaType.getName(), columnName, snowflakeType, insertRowIndex),
String.format(
String.format("Allowed Java types: %s", String.join(", ", allowedJavaTypes))));
}
/**
* Create exception when the Java type is correct, but the value is invalid (e.g. boolean cannot
* be parsed from a string)
*
* Note: Do not log actual Object Value
*
* @param columnName Column Name
* @param snowflakeType Snowflake column type
* @param reason Reason why value format is not allowed.
* @param rowIndex Index of the Input row primarily for debugging purposes.
* @return SFException is thrown
*/
private static SFException valueFormatNotAllowedException(
String columnName, String snowflakeType, String reason, final long rowIndex) {
return new SFException(
ErrorCode.INVALID_VALUE_ROW,
String.format(
"Value cannot be ingested into Snowflake column %s of type %s, rowIndex:%d, reason:"
+ " %s",
columnName, snowflakeType, rowIndex, reason));
}
/**
* Validates that a string is valid UTF-8 string. It catches situations like unmatched high/low
* UTF-16 surrogate, for example.
*/
private static void verifyValidUtf8(
String input, String columnName, String dataType, final long insertRowIndex) {
String roundTripStr =
new String(input.getBytes(StandardCharsets.UTF_8), StandardCharsets.UTF_8);
if (!input.equals(roundTripStr)) {
throw valueFormatNotAllowedException(
columnName, dataType, "Invalid Unicode string", insertRowIndex);
}
}
}