All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.wimpi.modbus.util.ModbusUtil Maven / Gradle / Ivy

Go to download

jamod is an object oriented implementation of the Modbus protocol, realized 100% in Java. It allows to quickly realize master and slave applications in various transport flavors (IP and serial).

The newest version!
/***
 * Copyright 2002-2010 jamod development team
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ***/

package net.wimpi.modbus.util;

import net.wimpi.modbus.Modbus;
import net.wimpi.modbus.io.BytesOutputStream;
import net.wimpi.modbus.msg.ModbusMessage;

import java.io.IOException;

/**
 * Helper class that provides utility methods.
 *
 * @author Dieter Wimberger
 * @author John Charlton
 *
 * @version @version@ (@date@)
 */
public final class ModbusUtil {

  private static BytesOutputStream m_ByteOut =
      new BytesOutputStream(Modbus.MAX_IP_MESSAGE_LENGTH);

  /**
   * Converts a ModbusMessage instance into
   * a hex encoded string representation.
   *
   * @param msg the message to be converted.
   * @return the converted hex encoded string representation of the message.
   */
  public static final String toHex(ModbusMessage msg) {
    String ret = "-1";
    try {
      synchronized (m_ByteOut) {
        msg.writeTo(m_ByteOut);
        ret = toHex(m_ByteOut.getBuffer(), 0, m_ByteOut.size());
        m_ByteOut.reset();
      }
    } catch (IOException ex) {
    }
    return ret;
  }//toHex

  /**
   * Returns the given byte[] as hex encoded string.
   *
   * @param data a byte[] array.
   * @return a hex encoded String.
   */
  public static final String toHex(byte[] data) {
    return toHex(data, 0, data.length);
  }//toHex

  /**
   * Returns a String containing unsigned hexadecimal
   * numbers as digits.
   * The String will coontain two hex digit characters
   * for each byte from the passed in byte[].
* The bytes will be separated by a space character. *

* * @param data the array of bytes to be converted into a hex-string. * @param off the offset to start converting from. * @param length the number of bytes to be converted. * * @return the generated hexadecimal representation as String. */ public static final String toHex(byte[] data, int off, int length) { //double size, two bytes (hex range) for one byte StringBuffer buf = new StringBuffer(data.length * 2); for (int i = off; i < length; i++) { //don't forget the second hex digit if (((int) data[i] & 0xff) < 0x10) { buf.append("0"); } buf.append(Long.toString((int) data[i] & 0xff, 16)); if (i < data.length - 1) { buf.append(" "); } } return buf.toString(); }//toHex /** * Returns a byte[] containing the given * byte as unsigned hexadecimal number digits. *

* * @param i the int to be converted into a hex string. * @return the generated hexadecimal representation as byte[]. */ public static final byte[] toHex(int i) { StringBuffer buf = new StringBuffer(2); //don't forget the second hex digit if (((int) i & 0xff) < 0x10) { buf.append("0"); } buf.append(Long.toString((int) i & 0xff, 16).toUpperCase()); return buf.toString().getBytes(); }//toHex /** * Converts the register (a 16 bit value) into an unsigned short. * The value returned is: *

(((a & 0xff) << 8) | (b & 0xff))
   * 
*

* This conversion has been taken from the documentation of * the DataInput interface. * * @param bytes a register as byte[2]. * @return the unsigned short value as int. * @see java.io.DataInput */ public static final int registerToUnsignedShort(byte[] bytes) { return ((bytes[0] & 0xff) << 8 | (bytes[1] & 0xff)); }//registerToUnsignedShort /** * Converts the given unsigned short into a register * (2 bytes). * The byte values in the register, in the order * shown, are: *

*


   * (byte)(0xff & (v >> 8))
   * (byte)(0xff & v)
   * 
*

* This conversion has been taken from the documentation of * the DataOutput interface. * * @param v * @return the register as byte[2]. * @see java.io.DataOutput */ public static final byte[] unsignedShortToRegister(int v) { byte[] register = new byte[2]; register[0] = (byte) (0xff & (v >> 8)); register[1] = (byte) (0xff & v); return register; }//unsignedShortToRegister /** * Converts the given register (16-bit value) into * a short. * The value returned is: *

*


   * (short)((a << 8) | (b & 0xff))
   * 
*

* This conversion has been taken from the documentation of * the DataInput interface. * * @param bytes bytes a register as byte[2]. * @return the signed short as short. */ public static final short registerToShort(byte[] bytes) { return (short) ((bytes[0] << 8) | (bytes[1] & 0xff)); }//registerToShort /** * Converts the register (16-bit value) at the given index * into a short. * The value returned is: *

*


   * (short)((a << 8) | (b & 0xff))
   * 
*

* This conversion has been taken from the documentation of * the DataInput interface. * * @param bytes a byte[] containing a short value. * @param idx an offset into the given byte[]. * @return the signed short as short. */ public static final short registerToShort(byte[] bytes, int idx) { return (short) ((bytes[idx] << 8) | (bytes[idx + 1] & 0xff)); }//registerToShort /** * Converts the given short into a register * (2 bytes). * The byte values in the register, in the order * shown, are: *

*


   * (byte)(0xff & (v >> 8))
   * (byte)(0xff & v)
   * 
* * @param s * @return a register containing the given short value. */ public static final byte[] shortToRegister(short s) { byte[] register = new byte[2]; register[0] = (byte) (0xff & (s >> 8)); register[1] = (byte) (0xff & s); return register; }//shortToRegister /** * Converts a byte[4] binary int value to a primitive int.
* The value returned is: *

   * 
   * (((a & 0xff) << 24) | ((b & 0xff) << 16) |
   *  ((c & 0xff) << 8) | (d & 0xff))
   * 
* * @param bytes registers as byte[4]. * @return the integer contained in the given register bytes. */ public static final int registersToInt(byte[] bytes) { return ( ((bytes[0] & 0xff) << 24) | ((bytes[1] & 0xff) << 16) | ((bytes[2] & 0xff) << 8) | (bytes[3] & 0xff) ); }//registersToInt /** * Converts an int value to a byte[4] array. * * @param v the value to be converted. * @return a byte[4] containing the value. */ public static final byte[] intToRegisters(int v) { byte[] registers = new byte[4]; registers[0] = (byte) (0xff & (v >> 24)); registers[1] = (byte) (0xff & (v >> 16)); registers[2] = (byte) (0xff & (v >> 8)); registers[3] = (byte) (0xff & v); return registers; }//intToRegisters /** * Converts a byte[8] binary long value into a long * primitive. * * @param bytes a byte[8] containing a long value. * @return a long value. */ public static final long registersToLong(byte[] bytes) { return ( (((long) (bytes[0] & 0xff) << 56) | ((long) (bytes[1] & 0xff) << 48) | ((long) (bytes[2] & 0xff) << 40) | ((long) (bytes[3] & 0xff) << 32) | ((long) (bytes[4] & 0xff) << 24) | ((long) (bytes[5] & 0xff) << 16) | ((long) (bytes[6] & 0xff) << 8) | ((long) (bytes[7] & 0xff))) ); }//registersToLong /** * Converts a long value to a byte[8]. * * @param v the value to be converted. * @return a byte[8] containing the long value. */ public static final byte[] longToRegisters(long v) { byte[] registers = new byte[8]; registers[0] = (byte) (0xff & (v >> 56)); registers[1] = (byte) (0xff & (v >> 48)); registers[2] = (byte) (0xff & (v >> 40)); registers[3] = (byte) (0xff & (v >> 32)); registers[4] = (byte) (0xff & (v >> 24)); registers[5] = (byte) (0xff & (v >> 16)); registers[6] = (byte) (0xff & (v >> 8)); registers[7] = (byte) (0xff & v); return registers; }//longToRegisters /** * Converts a byte[4] binary float value to a float primitive. * * @param bytes the byte[4] containing the float value. * @return a float value. */ public static final float registersToFloat(byte[] bytes) { return Float.intBitsToFloat(( ((bytes[0] & 0xff) << 24) | ((bytes[1] & 0xff) << 16) | ((bytes[2] & 0xff) << 8) | (bytes[3] & 0xff) )); }//registersToFloat /** * Converts a float value to a byte[4] binary float value. * * @param f the float to be converted. * @return a byte[4] containing the float value. */ public static final byte[] floatToRegisters(float f) { return intToRegisters(Float.floatToIntBits(f)); }//floatToRegisters /** * Converts a byte[8] binary double value into a double primitive. * * @param bytes a byte[8] to be converted. * @return a double value. */ public static final double registersToDouble(byte[] bytes) { return Double.longBitsToDouble(( (((long) (bytes[0] & 0xff) << 56) | ((long) (bytes[1] & 0xff) << 48) | ((long) (bytes[2] & 0xff) << 40) | ((long) (bytes[3] & 0xff) << 32) | ((long) (bytes[4] & 0xff) << 24) | ((long) (bytes[5] & 0xff) << 16) | ((long) (bytes[6] & 0xff) << 8) | ((long) (bytes[7] & 0xff))) )); }//registersToDouble /** * Converts a double value to a byte[8]. * * @param d the double to be converted. * @return a byte[8]. */ public static final byte[] doubleToRegisters(double d) { return longToRegisters(Double.doubleToLongBits(d)); }//doubleToRegisters /** * Converts an unsigned byte to an integer. * * @param b the byte to be converted. * @return an integer containing the unsigned byte value. */ public static final int unsignedByteToInt(byte b) { return (int) b & 0xFF; }//unsignedByteToInt /** * Returns the broadcast address for the subnet of the host the code * is executed on. * * @return the broadcast address as InetAddress. *

* public static final InetAddress getBroadcastAddress() { * byte[] addr = new byte[4]; * try { * addr = InetAddress.getLocalHost().getAddress(); * addr[3] = -1; * return getAddressFromBytes(addr); * } catch (Exception ex) { * ex.printStackTrace(); * return null; * } * }//getBroadcastAddress */ /* public static final InetAddress getAddressFromBytes(byte[] addr) throws Exception { StringBuffer sbuf = new StringBuffer(); for (int i = 0; i < addr.length; i++) { if (addr[i] < 0) { sbuf.append(256 + addr[i]); } else { sbuf.append(addr[i]); } if (i < (addr.length - 1)) { sbuf.append('.'); } } //DEBUG:System.out.println(sbuf.toString()); return InetAddress.getByName(sbuf.toString()); }//getAddressFromBytes */ //TODO: John description. /** * Returs the low byte of an integer word. * * @param wd * @return the low byte. */ public static final byte lowByte(int wd) { return (new Integer(0xff & wd).byteValue()); }// lowByte //TODO: John description. /** * * @param wd * @return the hi byte. */ public static final byte hiByte(int wd) { return (new Integer(0xff & (wd >> 8)).byteValue()); }// hiByte //TODO: John description. /** * * @param hibyte * @param lowbyte * @return a word. */ public static final int makeWord(int hibyte, int lowbyte) { int hi = 0xFF & hibyte; int low = 0xFF & lowbyte; return ((hi << 8) | low); }// makeWord public static final int[] calculateCRC(byte[] data, int offset, int len) { int[] crc = {0xFF, 0xFF}; int nextByte = 0; int uIndex; /* will index into CRC lookup*/ /* table */ /* pass through message buffer */ for (int i = offset; i < len && i < data.length; i++) { nextByte = 0xFF & ((int) data[i]); uIndex = crc[0] ^ nextByte; //*puchMsg++; /* calculate the CRC */ crc[0] = crc[1] ^ auchCRCHi[uIndex]; crc[1] = auchCRCLo[uIndex]; } return crc; }//calculateCRC public static final int calculateLRC(byte[] data, int off, int len) { int lrc = 0; for (int i = off; i < len; i++) { lrc += (int) data[i] & 0xff; //calculate with unsigned bytes } lrc = (lrc ^ 0xff) + 1; // two's complement return (int) ((byte) lrc) & 0xff; }//calculateLRC /* Table of CRC values for high-order byte */ private final static short[] auchCRCHi = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; /* Table of CRC values for low-order byte */ private final static short[] auchCRCLo = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 }; }//class ModBusUtil





© 2015 - 2024 Weber Informatics LLC | Privacy Policy