All Downloads are FREE. Search and download functionalities are using the official Maven repository.

nl.topicus.jdbc.shaded.com.google.common.math.LongMath Maven / Gradle / Ivy

There is a newer version: 1.1.6
Show newest version
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package nl.topicus.jdbc.shaded.com.google.common.math;

import static nl.topicus.jdbc.shaded.com.google.common.base.Preconditions.checkArgument;
import static nl.topicus.jdbc.shaded.com.google.common.base.Preconditions.checkNotNull;
import static nl.topicus.jdbc.shaded.com.google.common.math.MathPreconditions.checkNoOverflow;
import static nl.topicus.jdbc.shaded.com.google.common.math.MathPreconditions.checkNonNegative;
import static nl.topicus.jdbc.shaded.com.google.common.math.MathPreconditions.checkPositive;
import static nl.topicus.jdbc.shaded.com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.lang.Math.abs;
import static java.lang.Math.min;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;

import nl.topicus.jdbc.shaded.com.google.common.annotations.Beta;
import nl.topicus.jdbc.shaded.com.google.common.annotations.GwtCompatible;
import nl.topicus.jdbc.shaded.com.google.common.annotations.GwtIncompatible;
import nl.topicus.jdbc.shaded.com.google.common.annotations.VisibleForTesting;
import nl.topicus.jdbc.shaded.com.google.common.primitives.UnsignedLongs;
import java.math.BigInteger;
import java.math.RoundingMode;

/**
 * A class for arithmetic on values of type {@code long}. Where possible, methods are defined and
 * named analogously to their {@code BigInteger} counterparts.
 *
 * 

The implementations of many methods in this class are based on material from Henry S. Warren, * Jr.'s Hacker's Delight, (Addison Wesley, 2002). * *

Similar functionality for {@code int} and for {@link BigInteger} can be found in * {@link IntMath} and {@link BigIntegerMath} respectively. For other common operations on * {@code long} values, see {@link nl.topicus.jdbc.shaded.com.google.common.primitives.Longs}. * * @author Louis Wasserman * @since 11.0 */ @GwtCompatible(emulated = true) public final class LongMath { // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || @VisibleForTesting static final long MAX_SIGNED_POWER_OF_TWO = 1L << (Long.SIZE - 2); /** * Returns the smallest power of two greater than or equal to {@code x}. This is equivalent to * {@code checkedPow(2, log2(x, CEILING))}. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException of the next-higher power of two is not representable as a * {@code long}, i.e. when {@code x > 2^62} * @since 20.0 */ @Beta public static long ceilingPowerOfTwo(long x) { checkPositive("x", x); if (x > MAX_SIGNED_POWER_OF_TWO) { throw new ArithmeticException("ceilingPowerOfTwo(" + x + ") is not representable as a long"); } return 1L << -Long.numberOfLeadingZeros(x - 1); } /** * Returns the largest power of two less than or equal to {@code x}. This is equivalent to * {@code checkedPow(2, log2(x, FLOOR))}. * * @throws IllegalArgumentException if {@code x <= 0} * @since 20.0 */ @Beta public static long floorPowerOfTwo(long x) { checkPositive("x", x); // Long.highestOneBit was buggy on GWT. We've fixed it, but I'm not certain when the fix will // be released. return 1L << ((Long.SIZE - 1) - Long.numberOfLeadingZeros(x)); } /** * Returns {@code true} if {@code x} represents a power of two. * *

This differs from {@code Long.bitCount(x) == 1}, because * {@code Long.bitCount(Long.MIN_VALUE) == 1}, but {@link Long#MIN_VALUE} is not a power of two. */ public static boolean isPowerOfTwo(long x) { return x > 0 & (x & (x - 1)) == 0; } /** * Returns 1 if {@code x < y} as unsigned longs, and 0 otherwise. Assumes that x - y fits into a * signed long. The implementation is branch-free, and benchmarks suggest it is measurably faster * than the straightforward ternary expression. */ @VisibleForTesting static int lessThanBranchFree(long x, long y) { // Returns the sign bit of x - y. return (int) (~~(x - y) >>> (Long.SIZE - 1)); } /** * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of two */ @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log2(long x, RoundingMode mode) { checkPositive("x", x); switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through case DOWN: case FLOOR: return (Long.SIZE - 1) - Long.numberOfLeadingZeros(x); case UP: case CEILING: return Long.SIZE - Long.numberOfLeadingZeros(x - 1); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 int leadingZeros = Long.numberOfLeadingZeros(x); long cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros; // floor(2^(logFloor + 0.5)) int logFloor = (Long.SIZE - 1) - leadingZeros; return logFloor + lessThanBranchFree(cmp, x); default: throw new AssertionError("impossible"); } } /** The biggest half power of two that fits into an unsigned long */ @VisibleForTesting static final long MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333F9DE6484L; /** * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of ten */ @GwtIncompatible // TODO @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log10(long x, RoundingMode mode) { checkPositive("x", x); int logFloor = log10Floor(x); long floorPow = powersOf10[logFloor]; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(x == floorPow); // fall through case FLOOR: case DOWN: return logFloor; case CEILING: case UP: return logFloor + lessThanBranchFree(floorPow, x); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // sqrt(10) is irrational, so log10(x)-logFloor is never exactly 0.5 return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x); default: throw new AssertionError(); } } @GwtIncompatible // TODO static int log10Floor(long x) { /* * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation. * * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), we * can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) is 6, * then 64 <= x < 128, so floor(log10(x)) is either 1 or 2. */ int y = maxLog10ForLeadingZeros[Long.numberOfLeadingZeros(x)]; /* * y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the * lower of the two possible values, or y - 1, otherwise, we want y. */ return y - lessThanBranchFree(x, powersOf10[y]); } // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i))) @VisibleForTesting static final byte[] maxLog10ForLeadingZeros = { 19, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0 }; @GwtIncompatible // TODO @VisibleForTesting static final long[] powersOf10 = { 1L, 10L, 100L, 1000L, 10000L, 100000L, 1000000L, 10000000L, 100000000L, 1000000000L, 10000000000L, 100000000000L, 1000000000000L, 10000000000000L, 100000000000000L, 1000000000000000L, 10000000000000000L, 100000000000000000L, 1000000000000000000L }; // halfPowersOf10[i] = largest long less than 10^(i + 0.5) @GwtIncompatible // TODO @VisibleForTesting static final long[] halfPowersOf10 = { 3L, 31L, 316L, 3162L, 31622L, 316227L, 3162277L, 31622776L, 316227766L, 3162277660L, 31622776601L, 316227766016L, 3162277660168L, 31622776601683L, 316227766016837L, 3162277660168379L, 31622776601683793L, 316227766016837933L, 3162277660168379331L }; /** * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to * {@code BigInteger.valueOf(b).pow(k).longValue()}. This implementation runs in {@code O(log k)} * time. * * @throws IllegalArgumentException if {@code k < 0} */ @GwtIncompatible // TODO public static long pow(long b, int k) { checkNonNegative("exponent", k); if (-2 <= b && b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: return (k < Long.SIZE) ? 1L << k : 0; case (-2): if (k < Long.SIZE) { return ((k & 1) == 0) ? 1L << k : -(1L << k); } else { return 0; } default: throw new AssertionError(); } } for (long accum = 1; ; k >>= 1) { switch (k) { case 0: return accum; case 1: return accum * b; default: accum *= ((k & 1) == 0) ? 1 : b; b *= b; } } } /** * Returns the square root of {@code x}, rounded with the specified rounding mode. * * @throws IllegalArgumentException if {@code x < 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and * {@code sqrt(x)} is not an integer */ @GwtIncompatible // TODO @SuppressWarnings("fallthrough") public static long sqrt(long x, RoundingMode mode) { checkNonNegative("x", x); if (fitsInInt(x)) { return IntMath.sqrt((int) x, mode); } /* * Let k be the true value of floor(sqrt(x)), so that * * k * k <= x < (k + 1) * (k + 1) * (double) (k * k) <= (double) x <= (double) ((k + 1) * (k + 1)) * since casting to double is nondecreasing. * Note that the right-hand inequality is no longer strict. * Math.sqrt(k * k) <= Math.sqrt(x) <= Math.sqrt((k + 1) * (k + 1)) * since Math.sqrt is monotonic. * (long) Math.sqrt(k * k) <= (long) Math.sqrt(x) <= (long) Math.sqrt((k + 1) * (k + 1)) * since casting to long is monotonic * k <= (long) Math.sqrt(x) <= k + 1 * since (long) Math.sqrt(k * k) == k, as checked exhaustively in * {@link LongMathTest#testSqrtOfPerfectSquareAsDoubleIsPerfect} */ long guess = (long) Math.sqrt(x); // Note: guess is always <= FLOOR_SQRT_MAX_LONG. long guessSquared = guess * guess; // Note (2013-2-26): benchmarks indicate that, inscrutably enough, using if statements is // faster here than using lessThanBranchFree. switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(guessSquared == x); return guess; case FLOOR: case DOWN: if (x < guessSquared) { return guess - 1; } return guess; case CEILING: case UP: if (x > guessSquared) { return guess + 1; } return guess; case HALF_DOWN: case HALF_UP: case HALF_EVEN: long sqrtFloor = guess - ((x < guessSquared) ? 1 : 0); long halfSquare = sqrtFloor * sqrtFloor + sqrtFloor; /* * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x * and halfSquare are integers, this is equivalent to testing whether or not x <= * halfSquare. (We have to deal with overflow, though.) * * If we treat halfSquare as an unsigned long, we know that * sqrtFloor^2 <= x < (sqrtFloor + 1)^2 * halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1 * so |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare as a * signed long, so lessThanBranchFree is safe for use. */ return sqrtFloor + lessThanBranchFree(halfSquare, x); default: throw new AssertionError(); } } /** * Returns the result of dividing {@code p} by {@code q}, rounding using the specified * {@code RoundingMode}. * * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} * is not an integer multiple of {@code b} */ @GwtIncompatible // TODO @SuppressWarnings("fallthrough") public static long divide(long p, long q, RoundingMode mode) { checkNotNull(mode); long div = p / q; // throws if q == 0 long rem = p - q * div; // equals p % q if (rem == 0) { return div; } /* * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of * p / q. * * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise. */ int signum = 1 | (int) ((p ^ q) >> (Long.SIZE - 1)); boolean increment; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(rem == 0); // fall through case DOWN: increment = false; break; case UP: increment = true; break; case CEILING: increment = signum > 0; break; case FLOOR: increment = signum < 0; break; case HALF_EVEN: case HALF_DOWN: case HALF_UP: long absRem = abs(rem); long cmpRemToHalfDivisor = absRem - (abs(q) - absRem); // subtracting two nonnegative longs can't overflow // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2). if (cmpRemToHalfDivisor == 0) { // exactly on the half mark increment = (mode == HALF_UP | (mode == HALF_EVEN & (div & 1) != 0)); } else { increment = cmpRemToHalfDivisor > 0; // closer to the UP value } break; default: throw new AssertionError(); } return increment ? div + signum : div; } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from * {@code x % m}, which might be negative. * *

For example: * *

 {@code
   *
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0}
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ @GwtIncompatible // TODO public static int mod(long x, int m) { // Cast is safe because the result is guaranteed in the range [0, m) return (int) mod(x, (long) m); } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from * {@code x % m}, which might be negative. * *

For example: * *

 {@code
   *
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0}
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ @GwtIncompatible // TODO public static long mod(long x, long m) { if (m <= 0) { throw new ArithmeticException("Modulus must be positive"); } long result = x % m; return (result >= 0) ? result : result + m; } /** * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if * {@code a == 0 && b == 0}. * * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0} */ public static long gcd(long a, long b) { /* * The reason we require both arguments to be >= 0 is because otherwise, what do you return on * gcd(0, Long.MIN_VALUE)? BigInteger.gcd would return positive 2^63, but positive 2^63 isn't an * int. */ checkNonNegative("a", a); checkNonNegative("b", b); if (a == 0) { // 0 % b == 0, so b divides a, but the converse doesn't hold. // BigInteger.gcd is consistent with this decision. return b; } else if (b == 0) { return a; // similar logic } /* * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. This is * >60% faster than the Euclidean algorithm in benchmarks. */ int aTwos = Long.numberOfTrailingZeros(a); a >>= aTwos; // divide out all 2s int bTwos = Long.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. // We bend over backwards to avoid branching, adapting a technique from // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax long delta = a - b; // can't overflow, since a and b are nonnegative long minDeltaOrZero = delta & (delta >> (Long.SIZE - 1)); // equivalent to Math.min(delta, 0) a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b) // a is now nonnegative and even b += minDeltaOrZero; // sets b to min(old a, b) a >>= Long.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b } return a << min(aTwos, bTwos); } /** * Returns the sum of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a + b} overflows in signed {@code long} arithmetic */ @GwtIncompatible // TODO public static long checkedAdd(long a, long b) { long result = a + b; checkNoOverflow((a ^ b) < 0 | (a ^ result) >= 0); return result; } /** * Returns the difference of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a - b} overflows in signed {@code long} arithmetic */ @GwtIncompatible // TODO public static long checkedSubtract(long a, long b) { long result = a - b; checkNoOverflow((a ^ b) >= 0 | (a ^ result) >= 0); return result; } /** * Returns the product of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a * b} overflows in signed {@code long} arithmetic */ @GwtIncompatible // TODO public static long checkedMultiply(long a, long b) { // Hacker's Delight, Section 2-12 int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b); /* * If leadingZeros > Long.SIZE + 1 it's definitely fine, if it's < Long.SIZE it's definitely * bad. We do the leadingZeros check to avoid the division below if at all possible. * * Otherwise, if b == Long.MIN_VALUE, then the only allowed values of a are 0 and 1. We take * care of all a < 0 with their own check, because in particular, the case a == -1 will * incorrectly pass the division check below. * * In all other cases, we check that either a is 0 or the result is consistent with division. */ if (leadingZeros > Long.SIZE + 1) { return a * b; } checkNoOverflow(leadingZeros >= Long.SIZE); checkNoOverflow(a >= 0 | b != Long.MIN_VALUE); long result = a * b; checkNoOverflow(a == 0 || result / a == b); return result; } /** * Returns the {@code b} to the {@code k}th power, provided it does not overflow. * * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed * {@code long} arithmetic */ @GwtIncompatible // TODO public static long checkedPow(long b, int k) { checkNonNegative("exponent", k); if (b >= -2 & b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: checkNoOverflow(k < Long.SIZE - 1); return 1L << k; case (-2): checkNoOverflow(k < Long.SIZE); return ((k & 1) == 0) ? (1L << k) : (-1L << k); default: throw new AssertionError(); } } long accum = 1; while (true) { switch (k) { case 0: return accum; case 1: return checkedMultiply(accum, b); default: if ((k & 1) != 0) { accum = checkedMultiply(accum, b); } k >>= 1; if (k > 0) { checkNoOverflow(-FLOOR_SQRT_MAX_LONG <= b && b <= FLOOR_SQRT_MAX_LONG); b *= b; } } } } /** * Returns the sum of {@code a} and {@code b} unless it would overflow or underflow in which case * {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ @Beta public static long saturatedAdd(long a, long b) { long naiveSum = a + b; if ((a ^ b) < 0 | (a ^ naiveSum) >= 0) { // If a and b have different signs or a has the same sign as the result then there was no // overflow, return. return naiveSum; } // we did over/under flow, if the sign is negative we should return MAX otherwise MIN return Long.MAX_VALUE + ((naiveSum >>> (Long.SIZE - 1)) ^ 1); } /** * Returns the difference of {@code a} and {@code b} unless it would overflow or underflow in * which case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ @Beta public static long saturatedSubtract(long a, long b) { long naiveDifference = a - b; if ((a ^ b) >= 0 | (a ^ naiveDifference) >= 0) { // If a and b have the same signs or a has the same sign as the result then there was no // overflow, return. return naiveDifference; } // we did over/under flow return Long.MAX_VALUE + ((naiveDifference >>> (Long.SIZE - 1)) ^ 1); } /** * Returns the product of {@code a} and {@code b} unless it would overflow or underflow in which * case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ @Beta public static long saturatedMultiply(long a, long b) { // see checkedMultiply for explanation int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b); if (leadingZeros > Long.SIZE + 1) { return a * b; } // the return value if we will overflow (which we calculate by overflowing a long :) ) long limit = Long.MAX_VALUE + ((a ^ b) >>> (Long.SIZE - 1)); if (leadingZeros < Long.SIZE | (a < 0 & b == Long.MIN_VALUE)) { // overflow return limit; } long result = a * b; if (a == 0 || result / a == b) { return result; } return limit; } /** * Returns the {@code b} to the {@code k}th power, unless it would overflow or underflow in which * case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ @Beta public static long saturatedPow(long b, int k) { checkNonNegative("exponent", k); if (b >= -2 & b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: if (k >= Long.SIZE - 1) { return Long.MAX_VALUE; } return 1L << k; case (-2): if (k >= Long.SIZE) { return Long.MAX_VALUE + (k & 1); } return ((k & 1) == 0) ? (1L << k) : (-1L << k); default: throw new AssertionError(); } } long accum = 1; // if b is negative and k is odd then the limit is MIN otherwise the limit is MAX long limit = Long.MAX_VALUE + ((b >>> Long.SIZE - 1) & (k & 1)); while (true) { switch (k) { case 0: return accum; case 1: return saturatedMultiply(accum, b); default: if ((k & 1) != 0) { accum = saturatedMultiply(accum, b); } k >>= 1; if (k > 0) { if (-FLOOR_SQRT_MAX_LONG > b | b > FLOOR_SQRT_MAX_LONG) { return limit; } b *= b; } } } } @VisibleForTesting static final long FLOOR_SQRT_MAX_LONG = 3037000499L; /** * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if * {@code n == 0}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. * * @throws IllegalArgumentException if {@code n < 0} */ @GwtIncompatible // TODO public static long factorial(int n) { checkNonNegative("n", n); return (n < factorials.length) ? factorials[n] : Long.MAX_VALUE; } static final long[] factorials = { 1L, 1L, 1L * 2, 1L * 2 * 3, 1L * 2 * 3 * 4, 1L * 2 * 3 * 4 * 5, 1L * 2 * 3 * 4 * 5 * 6, 1L * 2 * 3 * 4 * 5 * 6 * 7, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 }; /** * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and * {@code k}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. * * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n} */ public static long binomial(int n, int k) { checkNonNegative("n", n); checkNonNegative("k", k); checkArgument(k <= n, "k (%s) > n (%s)", k, n); if (k > (n >> 1)) { k = n - k; } switch (k) { case 0: return 1; case 1: return n; default: if (n < factorials.length) { return factorials[n] / (factorials[k] * factorials[n - k]); } else if (k >= biggestBinomials.length || n > biggestBinomials[k]) { return Long.MAX_VALUE; } else if (k < biggestSimpleBinomials.length && n <= biggestSimpleBinomials[k]) { // guaranteed not to overflow long result = n--; for (int i = 2; i <= k; n--, i++) { result *= n; result /= i; } return result; } else { int nBits = LongMath.log2(n, RoundingMode.CEILING); long result = 1; long numerator = n--; long denominator = 1; int numeratorBits = nBits; // This is an upper bound on log2(numerator, ceiling). /* * We want to do this in long math for speed, but want to avoid overflow. We adapt the * technique previously used by BigIntegerMath: maintain separate numerator and * denominator accumulators, multiplying the fraction into result when near overflow. */ for (int i = 2; i <= k; i++, n--) { if (numeratorBits + nBits < Long.SIZE - 1) { // It's definitely safe to multiply into numerator and denominator. numerator *= n; denominator *= i; numeratorBits += nBits; } else { // It might not be safe to multiply into numerator and denominator, // so multiply (numerator / denominator) into result. result = multiplyFraction(result, numerator, denominator); numerator = n; denominator = i; numeratorBits = nBits; } } return multiplyFraction(result, numerator, denominator); } } } /** * Returns (x * numerator / denominator), which is assumed to come out to an integral value. */ static long multiplyFraction(long x, long numerator, long denominator) { if (x == 1) { return numerator / denominator; } long commonDivisor = gcd(x, denominator); x /= commonDivisor; denominator /= commonDivisor; // We know gcd(x, denominator) = 1, and x * numerator / denominator is exact, // so denominator must be a divisor of numerator. return x * (numerator / denominator); } /* * binomial(biggestBinomials[k], k) fits in a long, but not binomial(biggestBinomials[k] + 1, k). */ static final int[] biggestBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 3810779, 121977, 16175, 4337, 1733, 887, 534, 361, 265, 206, 169, 143, 125, 111, 101, 94, 88, 83, 79, 76, 74, 72, 70, 69, 68, 67, 67, 66, 66, 66, 66 }; /* * binomial(biggestSimpleBinomials[k], k) doesn't need to use the slower GCD-based impl, but * binomial(biggestSimpleBinomials[k] + 1, k) does. */ @VisibleForTesting static final int[] biggestSimpleBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 2642246, 86251, 11724, 3218, 1313, 684, 419, 287, 214, 169, 139, 119, 105, 95, 87, 81, 76, 73, 70, 68, 66, 64, 63, 62, 62, 61, 61, 61 }; // These values were generated by using checkedMultiply to see when the simple multiply/divide // algorithm would lead to an overflow. static boolean fitsInInt(long x) { return (int) x == x; } /** * Returns the arithmetic mean of {@code x} and {@code y}, rounded toward negative infinity. This * method is resilient to overflow. * * @since 14.0 */ public static long mean(long x, long y) { // Efficient method for computing the arithmetic mean. // The alternative (x + y) / 2 fails for large values. // The alternative (x + y) >>> 1 fails for negative values. return (x & y) + ((x ^ y) >> 1); } /* * This bitmask is used as an optimization for cheaply testing for divisiblity by 2, 3, or 5. * Each bit is set to 1 for all remainders that indicate divisibility by 2, 3, or 5, so * 1, 7, 11, 13, 17, 19, 23, 29 are set to 0. 30 and up don't matter because they won't be hit. */ private static final int SIEVE_30 = ~((1 << 1) | (1 << 7) | (1 << 11) | (1 << 13) | (1 << 17) | (1 << 19) | (1 << 23) | (1 << 29)); /** * Returns {@code true} if {@code n} is a * prime number: an integer greater * than one that cannot be factored into a product of smaller positive integers. * Returns {@code false} if {@code n} is zero, one, or a composite number (one which can * be factored into smaller positive integers). * *

To test larger numbers, use {@link BigInteger#isProbablePrime}. * * @throws IllegalArgumentException if {@code n} is negative * @since 20.0 */ @GwtIncompatible // TODO @Beta public static boolean isPrime(long n) { if (n < 2) { checkNonNegative("n", n); return false; } if (n == 2 || n == 3 || n == 5 || n == 7 || n == 11 || n == 13) { return true; } if ((SIEVE_30 & (1 << (n % 30))) != 0) { return false; } if (n % 7 == 0 || n % 11 == 0 || n % 13 == 0) { return false; } if (n < 17 * 17) { return true; } for (long[] baseSet : millerRabinBaseSets) { if (n <= baseSet[0]) { for (int i = 1; i < baseSet.length; i++) { if (!MillerRabinTester.test(baseSet[i], n)) { return false; } } return true; } } throw new AssertionError(); } /* * If n <= millerRabinBases[i][0], then testing n against bases millerRabinBases[i][1..] suffices * to prove its primality. Values from miller-rabin.appspot.com. * * NOTE: We could get slightly better bases that would be treated as unsigned, but benchmarks * showed negligible performance improvements. */ private static final long[][] millerRabinBaseSets = { {291830, 126401071349994536L}, {885594168, 725270293939359937L, 3569819667048198375L}, {273919523040L, 15, 7363882082L, 992620450144556L}, {47636622961200L, 2, 2570940, 211991001, 3749873356L}, { 7999252175582850L, 2, 4130806001517L, 149795463772692060L, 186635894390467037L, 3967304179347715805L }, { 585226005592931976L, 2, 123635709730000L, 9233062284813009L, 43835965440333360L, 761179012939631437L, 1263739024124850375L }, {Long.MAX_VALUE, 2, 325, 9375, 28178, 450775, 9780504, 1795265022} }; private enum MillerRabinTester { /** * Works for inputs <= FLOOR_SQRT_MAX_LONG. */ SMALL { @Override long mulMod(long a, long b, long m) { /* * NOTE(lowasser, 2015-Feb-12): Benchmarks suggest that changing this to * UnsignedLongs.remainder and increasing the threshold to 2^32 doesn't pay for itself, and * adding another enum constant hurts performance further -- I suspect because bimorphic * implementation is a sweet spot for the JVM. */ return (a * b) % m; } @Override long squareMod(long a, long m) { return (a * a) % m; } }, /** * Works for all nonnegative signed longs. */ LARGE { /** * Returns (a + b) mod m. Precondition: 0 <= a, b < m < 2^63. */ private long plusMod(long a, long b, long m) { return (a >= m - b) ? (a + b - m) : (a + b); } /** * Returns (a * 2^32) mod m. a may be any unsigned long. */ private long times2ToThe32Mod(long a, long m) { int remainingPowersOf2 = 32; do { int shift = Math.min(remainingPowersOf2, Long.numberOfLeadingZeros(a)); // shift is either the number of powers of 2 left to multiply a by, or the biggest shift // possible while keeping a in an unsigned long. a = UnsignedLongs.remainder(a << shift, m); remainingPowersOf2 -= shift; } while (remainingPowersOf2 > 0); return a; } @Override long mulMod(long a, long b, long m) { long aHi = a >>> 32; // < 2^31 long bHi = b >>> 32; // < 2^31 long aLo = a & 0xFFFFFFFFL; // < 2^32 long bLo = b & 0xFFFFFFFFL; // < 2^32 /* * a * b == aHi * bHi * 2^64 + (aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo. * == (aHi * bHi * 2^32 + aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo * * We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any * unsigned long, we don't have to do a mod on every operation, only when intermediate * results can exceed 2^63. */ long result = times2ToThe32Mod(aHi * bHi /* < 2^62 */, m); // < m < 2^63 result += aHi * bLo; // aHi * bLo < 2^63, result < 2^64 if (result < 0) { result = UnsignedLongs.remainder(result, m); } // result < 2^63 again result += aLo * bHi; // aLo * bHi < 2^63, result < 2^64 result = times2ToThe32Mod(result, m); // result < m < 2^63 return plusMod( result, UnsignedLongs.remainder(aLo * bLo /* < 2^64 */, m), m); } @Override long squareMod(long a, long m) { long aHi = a >>> 32; // < 2^31 long aLo = a & 0xFFFFFFFFL; // < 2^32 /* * a^2 == aHi^2 * 2^64 + aHi * aLo * 2^33 + aLo^2 * == (aHi^2 * 2^32 + aHi * aLo * 2) * 2^32 + aLo^2 * We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any * unsigned long, we don't have to do a mod on every operation, only when intermediate * results can exceed 2^63. */ long result = times2ToThe32Mod(aHi * aHi /* < 2^62 */, m); // < m < 2^63 long hiLo = aHi * aLo * 2; if (hiLo < 0) { hiLo = UnsignedLongs.remainder(hiLo, m); } // hiLo < 2^63 result += hiLo; // result < 2^64 result = times2ToThe32Mod(result, m); // result < m < 2^63 return plusMod( result, UnsignedLongs.remainder(aLo * aLo /* < 2^64 */, m), m); } }; static boolean test(long base, long n) { // Since base will be considered % n, it's okay if base > FLOOR_SQRT_MAX_LONG, // so long as n <= FLOOR_SQRT_MAX_LONG. return ((n <= FLOOR_SQRT_MAX_LONG) ? SMALL : LARGE).testWitness(base, n); } /** * Returns a * b mod m. */ abstract long mulMod(long a, long b, long m); /** * Returns a^2 mod m. */ abstract long squareMod(long a, long m); /** * Returns a^p mod m. */ private long powMod(long a, long p, long m) { long res = 1; for (; p != 0; p >>= 1) { if ((p & 1) != 0) { res = mulMod(res, a, m); } a = squareMod(a, m); } return res; } /** * Returns true if n is a strong probable prime relative to the specified base. */ private boolean testWitness(long base, long n) { int r = Long.numberOfTrailingZeros(n - 1); long d = (n - 1) >> r; base %= n; if (base == 0) { return true; } // Calculate a := base^d mod n. long a = powMod(base, d, n); // n passes this test if // base^d = 1 (mod n) // or base^(2^j * d) = -1 (mod n) for some 0 <= j < r. if (a == 1) { return true; } int j = 0; while (a != n - 1) { if (++j == r) { return false; } a = squareMod(a, n); } return true; } } private LongMath() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy