weka.classifiers.rules.Prism Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of simpleEducationalLearningSchemes Show documentation
Show all versions of simpleEducationalLearningSchemes Show documentation
Simple learning schemes for educational purposes (Prism, Id3, IB1 and NaiveBayesSimple).
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* Prism.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.rules;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.Utils;
import java.io.Serializable;
import java.util.Enumeration;
/**
* Class for building and using a PRISM rule set for classification. Can only deal with nominal attributes. Can't deal with missing values. Doesn't do any pruning.
*
* For more information, see
*
* J. Cendrowska (1987). PRISM: An algorithm for inducing modular rules. International Journal of Man-Machine Studies. 27(4):349-370.
*
*
* BibTeX:
*
* @article{Cendrowska1987,
* author = {J. Cendrowska},
* journal = {International Journal of Man-Machine Studies},
* number = {4},
* pages = {349-370},
* title = {PRISM: An algorithm for inducing modular rules},
* volume = {27},
* year = {1987}
* }
*
*
*
* Valid options are:
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* @author Ian H. Witten ([email protected])
* @version $Revision: 8109 $
*/
public class Prism
extends AbstractClassifier
implements TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = 1310258880025902106L;
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Class for building and using a PRISM rule set for classification. "
+ "Can only deal with nominal attributes. Can't deal with missing values. "
+ "Doesn't do any pruning.\n\n"
+ "For more information, see \n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.ARTICLE);
result.setValue(Field.AUTHOR, "J. Cendrowska");
result.setValue(Field.YEAR, "1987");
result.setValue(Field.TITLE, "PRISM: An algorithm for inducing modular rules");
result.setValue(Field.JOURNAL, "International Journal of Man-Machine Studies");
result.setValue(Field.VOLUME, "27");
result.setValue(Field.NUMBER, "4");
result.setValue(Field.PAGES, "349-370");
return result;
}
/**
* Class for storing a PRISM ruleset, i.e. a list of rules
*/
private class PrismRule
implements Serializable, RevisionHandler {
/** for serialization */
static final long serialVersionUID = 4248784350656508583L;
/** The classification */
private int m_classification;
/** The instance */
private Instances m_instances;
/** First test of this rule */
private Test m_test;
/** Number of errors made by this rule (will end up 0) */
private int m_errors;
/** The next rule in the list */
private PrismRule m_next;
/**
* Constructor that takes instances and the classification.
*
* @param data the instances
* @param cl the class
* @exception Exception if something goes wrong
*/
public PrismRule(Instances data, int cl) throws Exception {
m_instances = data;
m_classification = cl;
m_test = null;
m_next = null;
m_errors = 0;
Enumeration enu = data.enumerateInstances();
while (enu.hasMoreElements()) {
if ((int) ((Instance) enu.nextElement()).classValue() != cl) {
m_errors++;
}
}
m_instances = new Instances(m_instances, 0);
}
/**
* Returns the result assigned by this rule to a given instance.
*
* @param inst the instance to be classified
* @return the classification
*/
public int resultRule(Instance inst) {
if (m_test == null || m_test.satisfies(inst)) {
return m_classification;
} else {
return -1;
}
}
/**
* Returns the result assigned by these rules to a given instance.
*
* @param inst the instance to be classified
* @return the classification
*/
public int resultRules(Instance inst) {
if (resultRule(inst) != -1) {
return m_classification;
} else if (m_next != null) {
return m_next.resultRules(inst);
} else {
return -1;
}
}
/**
* Returns the set of instances that are covered by this rule.
*
* @param data the instances to be checked
* @return the instances covered
*/
public Instances coveredBy(Instances data) {
Instances r = new Instances(data, data.numInstances());
Enumeration enu = data.enumerateInstances();
while (enu.hasMoreElements()) {
Instance i = (Instance) enu.nextElement();
if (resultRule(i) != -1) {
r.add(i);
}
}
r.compactify();
return r;
}
/**
* Returns the set of instances that are not covered by this rule.
*
* @param data the instances to be checked
* @return the instances not covered
*/
public Instances notCoveredBy(Instances data) {
Instances r = new Instances(data, data.numInstances());
Enumeration enu = data.enumerateInstances();
while (enu.hasMoreElements()) {
Instance i = (Instance) enu.nextElement();
if (resultRule(i) == -1) {
r.add(i);
}
}
r.compactify();
return r;
}
/**
* Prints the set of rules.
*
* @return a description of the rules as a string
*/
public String toString() {
try {
StringBuffer text = new StringBuffer();
if (m_test != null) {
text.append("If ");
for (Test t = m_test; t != null; t = t.m_next) {
if (t.m_attr == -1) {
text.append("?");
} else {
text.append(m_instances.attribute(t.m_attr).name() + " = " +
m_instances.attribute(t.m_attr).value(t.m_val));
}
if (t.m_next != null) {
text.append("\n and ");
}
}
text.append(" then ");
}
text.append(m_instances.classAttribute().value(m_classification) + "\n");
if (m_next != null) {
text.append(m_next.toString());
}
return text.toString();
} catch (Exception e) {
return "Can't print Prism classifier!";
}
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 8109 $");
}
}
/**
* Class for storing a list of attribute-value tests
*/
private class Test
implements Serializable, RevisionHandler {
/** for serialization */
static final long serialVersionUID = -8925333011350280799L;
/** Attribute to test */
private int m_attr = -1;
/** The attribute's value */
private int m_val;
/** The next test in the rule */
private Test m_next = null;
/**
* Returns whether a given instance satisfies this test.
*
* @param inst the instance to be tested
* @return true if the instance satisfies the test
*/
private boolean satisfies(Instance inst) {
if ((int) inst.value(m_attr) == m_val) {
if (m_next == null) {
return true;
} else {
return m_next.satisfies(inst);
}
}
return false;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 8109 $");
}
}
/** The first rule in the list of rules */
private PrismRule m_rules;
/**
* Classifies a given instance.
*
* @param inst the instance to be classified
* @return the classification
*/
public double classifyInstance(Instance inst) {
int result = m_rules.resultRules(inst);
if (result == -1) {
return Utils.missingValue();
} else {
return (double)result;
}
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
// class
result.enable(Capability.NOMINAL_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
return result;
}
/**
* Generates the classifier.
*
* @param data the data to be used
* @exception Exception if the classifier can't built successfully
*/
public void buildClassifier(Instances data) throws Exception {
int cl; // possible value of theClass
Instances E, ruleE;
PrismRule rule = null;
Test test = null, oldTest = null;
int bestCorrect, bestCovers, attUsed;
Enumeration enumAtt;
// can classifier handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
data = new Instances(data);
data.deleteWithMissingClass();
for (cl = 0; cl < data.numClasses(); cl++) { // for each class cl
E = data; // initialize E to the instance set
while (contains(E, cl)) { // while E contains examples in class cl
rule = addRule(rule, new PrismRule(E, cl)); // make a new rule
ruleE = E; // examples covered by this rule
while (rule.m_errors != 0) { // until the rule is perfect
test = new Test(); // make a new test
bestCorrect = bestCovers = attUsed = 0;
// for every attribute not mentioned in the rule
enumAtt = ruleE.enumerateAttributes();
while (enumAtt.hasMoreElements()) {
Attribute attr = (Attribute) enumAtt.nextElement();
if (isMentionedIn(attr, rule.m_test)) {
attUsed++;
continue;
}
int M = attr.numValues();
int[] covers = new int [M];
int[] correct = new int [M];
for (int j = 0; j < M; j++) {
covers[j] = correct[j] = 0;
}
// ... calculate the counts for this class
Enumeration enu = ruleE.enumerateInstances();
while (enu.hasMoreElements()) {
Instance i = (Instance) enu.nextElement();
covers[(int) i.value(attr)]++;
if ((int) i.classValue() == cl) {
correct[(int) i.value(attr)]++;
}
}
// ... for each value of this attribute, see if this test is better
for (int val = 0; val < M; val ++) {
int diff = correct[val] * bestCovers - bestCorrect * covers[val];
// this is a ratio test, correct/covers vs best correct/covers
if (test.m_attr == -1
|| diff > 0 || (diff == 0 && correct[val] > bestCorrect)) {
// update the rule to use this test
bestCorrect = correct[val];
bestCovers = covers[val];
test.m_attr = attr.index();
test.m_val = val;
rule.m_errors = bestCovers - bestCorrect;
}
}
}
if (test.m_attr == -1) { // Couldn't find any sensible test
break;
}
oldTest = addTest(rule, oldTest, test);
ruleE = rule.coveredBy(ruleE);
if (attUsed == (data.numAttributes() - 1)) { // Used all attributes.
break;
}
}
E = rule.notCoveredBy(E);
}
}
}
/**
* Add a rule to the ruleset.
*
* @param lastRule the last rule in the rule set
* @param newRule the rule to be added
* @return the new last rule in the rule set
*/
private PrismRule addRule(PrismRule lastRule, PrismRule newRule) {
if (lastRule == null) {
m_rules = newRule;
} else {
lastRule.m_next = newRule;
}
return newRule;
}
/**
* Add a test to this rule.
*
* @param rule the rule to which test is to be added
* @param lastTest the rule's last test
* @param newTest the test to be added
* @return the new last test of the rule
*/
private Test addTest(PrismRule rule, Test lastTest, Test newTest) {
if (rule.m_test == null) {
rule.m_test = newTest;
} else {
lastTest.m_next = newTest;
}
return newTest;
}
/**
* Does E contain any examples in the class C?
*
* @param E the instances to be checked
* @param C the class
* @return true if there are any instances of class C
* @throws Exception if something goes wrong
*/
private static boolean contains(Instances E, int C) throws Exception {
Enumeration enu = E.enumerateInstances();
while (enu.hasMoreElements()) {
if ((int) ((Instance) enu.nextElement()).classValue() == C) {
return true;
}
}
return false;
}
/**
* Is this attribute mentioned in the rule?
*
* @param attr the attribute to be checked for
* @param t test contained by rule
* @return true if the attribute is mentioned in the rule
*/
private static boolean isMentionedIn(Attribute attr, Test t) {
if (t == null) {
return false;
}
if (t.m_attr == attr.index()) {
return true;
}
return isMentionedIn(attr, t.m_next);
}
/**
* Prints a description of the classifier.
*
* @return a description of the classifier as a string
*/
public String toString() {
if (m_rules == null) {
return "Prism: No model built yet.";
}
return "Prism rules\n----------\n" + m_rules.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 8109 $");
}
/**
* Main method for testing this class
*
* @param args the commandline parameters
*/
public static void main(String[] args) {
runClassifier(new Prism(), args);
}
}