
one.empty3.feature20220726.ClassificationAvgColors Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of empty3-library-3d Show documentation
Show all versions of empty3-library-3d Show documentation
3D rendering engine. Plus modelling. Expected glsl textures 3d and 2d rendering3D primitives, and a lot of scenes' samples to test.+ Game Jogl reworked, Calculator (numbers and vectors). Java code parser implementation starts (<=1.2)
The newest version!
/*
*
* * Copyright (c) 2024. Manuel Daniel Dahmen
* *
* *
* * Copyright 2024 Manuel Daniel Dahmen
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*
*/
package one.empty3.feature20220726;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Objects;
import java.util.function.BiConsumer;
import javaAnd.awt.image.imageio.ImageIO;
import one.empty3.io.ProcessFile;
import one.empty3.library.Point3D;
public class ClassificationAvgColors extends ProcessFile {
public ClassificationAvgColors() {
}
@Override
public boolean process(File in, File out) {
KMeans classification = new KMeans();
classification.process(in, out);
// Processed by "classification
// Non filtered image
BufferedImage original = ImageIO.read(in);
PixM pixMOriginal = new PixM(Objects.requireNonNull(original));
PixM toProcess = new PixM(original);
Map c = classification.kClusterer.centroids;
Map sum = new HashMap<>();
Map count = new HashMap<>();
// Faire les moyennes des points de même groupe
c.forEach(new BiConsumer() {
@Override
public void accept(Integer integer, double[] doubles) {
sum.putIfAbsent(integer, Point3D.O0);
count.putIfAbsent(integer, 0);
sum.put(integer, sum.get(integer).plus(pixMOriginal.getP((int) doubles[0], (int) doubles[1])));
count.put(integer, count.get(integer) + 1);
}
});
Point3D[] ps = new Point3D[c.keySet().size()];
c.forEach(new BiConsumer() {
@Override
public void accept(Integer integer, double[] doubles) {
Integer countI = count.get(integer);
Point3D sumI = sum.get(integer);
sumI = sumI.mult(1. / countI);
ps[integer] = sumI;
}
});
c.forEach(new BiConsumer() {
@Override
public void accept(Integer integer, double[] doubles) {
Integer countI = count.get(integer);
Point3D sumI = sum.get(integer);
sumI = sumI.mult(1. / countI);
for (int c = 0; c < 3; c++)
doubles[c + 2] = ps[integer].get(c);
toProcess.setP((int) (doubles[0]), (int) (doubles[1]),
sumI);
}
});
return ImageIO.write(toProcess.getImage(), "jpg", out);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy