
one.empty3.feature20220726.violajonesclassifier.PartMatch Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of empty3-library-3d Show documentation
Show all versions of empty3-library-3d Show documentation
3D rendering engine. Plus modelling. Expected glsl textures 3d and 2d rendering3D primitives, and a lot of scenes' samples to test.+ Game Jogl reworked, Calculator (numbers and vectors). Java code parser implementation starts (<=1.2)
The newest version!
/*
*
* * Copyright (c) 2024. Manuel Daniel Dahmen
* *
* *
* * Copyright 2024 Manuel Daniel Dahmen
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*
*/
package one.empty3.feature20220726.violajonesclassifier;
import one.empty3.feature20220726.GaussFilterPixM;
import one.empty3.feature20220726.PixM;
import one.empty3.io.ProcessFile;
import one.empty3.library.Point2D;
import javaAnd.awt.image.imageio.ImageIO;
import javaAnd.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class PartMatch extends ProcessFile {
List featuresDescriptors = new ArrayList<>();
/// Partitioning searches for features.
double featureMaxSize;//%original
double featureMinSize;//PX
double incrXY;// size matrices
double nOrient;// #angles
public PartMatch() {
int N = 128;
for (int n = 4; n <= N; n *= 2) {
for (double a = 0; a < 1.; a += 1 / 16.) {
PixM pixM = new PixM(n, n);
double lineAx = (Math.cos(Math.PI * 2 * a) + 0.5) * n;
double lineAy = (Math.sin(Math.PI * 2 * a) + 0.5) * n;
double lineBx = n / 2. - lineAx / 2.;
double lineBy = n / 2. - lineAy / 2.;
Point2D pa = new Point2D(lineAx, lineAy);
Point2D pb = new Point2D(lineBx, lineBy);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
Point2D p = new Point2D(i, j);
double sign = Math.signum(prod2(pb.moins(pa), pb.moins(p)));
pixM.setValues(i, j, sign, sign, sign);
}
ImageIO.write(pixM.normalize(0, 1).getImage(), "jpg", new File("features/featureDesc_"
+ n + "_angle_" + a + ".jpg"));
featuresDescriptors.add(pixM);
}
}
}
public double prodScalaire(Point2D v1, Point2D v2) {
return v1.getX() * v2.getX() + v1.getY() * v2.getY();
}
public Point2D prodVect(Point2D v1, Point2D v2) {
return new Point2D(v2.getY() - v1.getX(), v1.getY() - v2.getX());
}
public double prod2(Point2D v1, Point2D v2) {
return v1.getX() * v2.getX()
- v1.getY() * v2.getY();
}
public double computeScore(PixM image, int x, int y, int n, PixM match) {
double score = 0.0;
for (int i = x; i < x + n; i++) {
for (int j = y; j < y + n; j++) {
score = image.luminance(i, j) * match.luminance(i, j);
}
}
return Math.abs(score / n / n);
}
public double intensity(PixM image, int x, int y, int n) {
double score = 0.0;
for (int i = x; i < x + n; i++) {
for (int j = y; j < y + n; j++) {
score = image.luminance(i, j) * 1;
}
}
return score / n / n;
}
@Override
public boolean process(File in, File out) {
featuresDescriptors = new ArrayList<>();
PixM pix = PixM.getPixM(ImageIO.read(in), maxRes);
BufferedImage outImg = pix.getImage();
int[][] largeurs = new int[pix.getColumns()][pix.getLines()];
double lastMatchScore = 0;
for (int n = 4; n < 128; n *= 2) {
double matchScoreMax;
for (int i = 0; i < pix.getColumns(); i++) {
for (int j = 0; j < pix.getLines(); j++) {
double m;
double matchScoreMin = 0.6;
int index = 0;
for (index = 0; index < featuresDescriptors.size(); index++) {
double intensity = intensity(pix, i, j, n);
double intensityFD = intensity(featuresDescriptors.get(index), i, j, n);
double matchScore = computeScore(pix, i, j, n, featuresDescriptors.get(index));
if (matchScore >= Math.abs(intensity - intensityFD)
&& matchScore >= matchScoreMin) {
//outImg.drawRect(i, j, n, n, null);
classify(matchScore, featuresDescriptors.get(index));
lastMatchScore = matchScore;
}
}
}
}
}
ImageIO.write(outImg, "jpg", out);
return true;
}
private void classify(double m, PixM pixM) {
}
private double matchScore(PixM pix, int i, int j, int n, PixM pixM) {
return 0;
}
public static void main(String[] args) {
PartMatch partMatch = new PartMatch();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy