
org.apache.spark.sql.adapter.Spark2Adapter.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.adapter
import org.apache.hudi.client.utils.SparkRowSerDe
import org.apache.hudi.common.table.HoodieTableMetaClient
import org.apache.hudi.storage.StoragePath
import org.apache.hudi.{AvroConversionUtils, DefaultSource, Spark2HoodieFileScanRDD, Spark2RowSerDe}
import org.apache.avro.Schema
import org.apache.hadoop.conf.Configuration
import org.apache.spark.sql._
import org.apache.spark.sql.avro._
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{AttributeReference, Expression, InterpretedPredicate}
import org.apache.spark.sql.catalyst.parser.ParserInterface
import org.apache.spark.sql.catalyst.plans.logical.{Command, DeleteFromTable}
import org.apache.spark.sql.catalyst.util.DateFormatter
import org.apache.spark.sql.execution.{QueryExecution, SQLExecution}
import org.apache.spark.sql.execution.datasources._
import org.apache.spark.sql.execution.datasources.parquet.{ParquetFileFormat, Spark24LegacyHoodieParquetFileFormat, Spark24ParquetReader, SparkParquetReader}
import org.apache.spark.sql.execution.vectorized.MutableColumnarRow
import org.apache.spark.sql.hudi.SparkAdapter
import org.apache.spark.sql.hudi.parser.HoodieSpark2ExtendedSqlParser
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.parser.HoodieExtendedParserInterface
import org.apache.spark.sql.sources.{BaseRelation, Filter}
import org.apache.spark.sql.types.{DataType, Metadata, MetadataBuilder, StructType}
import org.apache.spark.sql.vectorized.{ColumnVector, ColumnarBatch}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.storage.StorageLevel._
import java.time.ZoneId
import java.util.TimeZone
import java.util.concurrent.ConcurrentHashMap
import scala.collection.JavaConverters.mapAsScalaMapConverter
import scala.collection.convert.Wrappers.JConcurrentMapWrapper
import scala.collection.mutable.ArrayBuffer
/**
* Implementation of [[SparkAdapter]] for Spark 2.4.x
*/
class Spark2Adapter extends SparkAdapter {
override def isColumnarBatchRow(r: InternalRow): Boolean = {
// NOTE: In Spark 2.x there's no [[ColumnarBatchRow]], instead [[MutableColumnarRow]] is leveraged
// for vectorized reads
r.isInstanceOf[MutableColumnarRow]
}
def createCatalystMetadataForMetaField: Metadata =
// NOTE: Since [[METADATA_COL_ATTR_KEY]] flag is not available in Spark 2.x,
// we simply produce an empty [[Metadata]] instance
new MetadataBuilder().build()
private val cache = JConcurrentMapWrapper(
new ConcurrentHashMap[ZoneId, DateFormatter](1))
override def getCatalogUtils: HoodieCatalogUtils = {
throw new UnsupportedOperationException("Catalog utilities are not supported in Spark 2.x");
}
override def getCatalystPlanUtils: HoodieCatalystPlansUtils = HoodieSpark2CatalystPlanUtils
override def getCatalystExpressionUtils: HoodieCatalystExpressionUtils = HoodieSpark2CatalystExpressionUtils
override def getSchemaUtils: HoodieSchemaUtils = HoodieSpark2SchemaUtils
override def getSparkPartitionedFileUtils: HoodieSparkPartitionedFileUtils = HoodieSpark2PartitionedFileUtils
override def createAvroSerializer(rootCatalystType: DataType, rootAvroType: Schema, nullable: Boolean): HoodieAvroSerializer =
new HoodieSpark2_4AvroSerializer(rootCatalystType, rootAvroType, nullable)
override def createAvroDeserializer(rootAvroType: Schema, rootCatalystType: DataType): HoodieAvroDeserializer =
new HoodieSpark2_4AvroDeserializer(rootAvroType, rootCatalystType)
override def getAvroSchemaConverters: HoodieAvroSchemaConverters = HoodieSparkAvroSchemaConverters
override def createSparkRowSerDe(schema: StructType): SparkRowSerDe = {
val encoder = getCatalystExpressionUtils.getEncoder(schema)
new Spark2RowSerDe(encoder)
}
override def createExtendedSparkParser(spark: SparkSession, delegate: ParserInterface): HoodieExtendedParserInterface =
new HoodieSpark2ExtendedSqlParser(spark, delegate)
override def getSparkParsePartitionUtil: SparkParsePartitionUtil = Spark2ParsePartitionUtil
override def getDateFormatter(tz: TimeZone): DateFormatter = {
cache.getOrElseUpdate(tz.toZoneId, DateFormatter())
}
/**
* Combine [[PartitionedFile]] to [[FilePartition]] according to `maxSplitBytes`.
*
* This is a copy of org.apache.spark.sql.execution.datasources.FilePartition#getFilePartitions from Spark 3.2.
* And this will be called only in Spark 2.
*/
override def getFilePartitions(
sparkSession: SparkSession,
partitionedFiles: Seq[PartitionedFile],
maxSplitBytes: Long): Seq[FilePartition] = {
val partitions = new ArrayBuffer[FilePartition]
val currentFiles = new ArrayBuffer[PartitionedFile]
var currentSize = 0L
/** Close the current partition and move to the next. */
def closePartition(): Unit = {
if (currentFiles.nonEmpty) {
// Copy to a new Array.
val newPartition = FilePartition(partitions.size, currentFiles.toArray)
partitions += newPartition
}
currentFiles.clear()
currentSize = 0
}
val openCostInBytes = sparkSession.sessionState.conf.filesOpenCostInBytes
// Assign files to partitions using "Next Fit Decreasing"
partitionedFiles.foreach { file =>
if (currentSize + file.length > maxSplitBytes) {
closePartition()
}
// Add the given file to the current partition.
currentSize += file.length + openCostInBytes
currentFiles += file
}
closePartition()
partitions.toSeq
}
override def createLegacyHoodieParquetFileFormat(appendPartitionValues: Boolean): Option[ParquetFileFormat] = {
Some(new Spark24LegacyHoodieParquetFileFormat(appendPartitionValues))
}
override def createInterpretedPredicate(e: Expression): InterpretedPredicate = {
InterpretedPredicate.create(e)
}
override def createRelation(sqlContext: SQLContext,
metaClient: HoodieTableMetaClient,
schema: Schema,
globPaths: Array[StoragePath],
parameters: java.util.Map[String, String]): BaseRelation = {
val dataSchema = Option(schema).map(AvroConversionUtils.convertAvroSchemaToStructType).orNull
DefaultSource.createRelation(sqlContext, metaClient, dataSchema, globPaths, parameters.asScala.toMap)
}
override def createHoodieFileScanRDD(sparkSession: SparkSession,
readFunction: PartitionedFile => Iterator[InternalRow],
filePartitions: Seq[FilePartition],
readDataSchema: StructType,
metadataColumns: Seq[AttributeReference] = Seq.empty): FileScanRDD = {
new Spark2HoodieFileScanRDD(sparkSession, readFunction, filePartitions)
}
override def extractDeleteCondition(deleteFromTable: Command): Expression = {
deleteFromTable.asInstanceOf[DeleteFromTable].condition.getOrElse(null)
}
override def convertStorageLevelToString(level: StorageLevel): String = level match {
case NONE => "NONE"
case DISK_ONLY => "DISK_ONLY"
case DISK_ONLY_2 => "DISK_ONLY_2"
case MEMORY_ONLY => "MEMORY_ONLY"
case MEMORY_ONLY_2 => "MEMORY_ONLY_2"
case MEMORY_ONLY_SER => "MEMORY_ONLY_SER"
case MEMORY_ONLY_SER_2 => "MEMORY_ONLY_SER_2"
case MEMORY_AND_DISK => "MEMORY_AND_DISK"
case MEMORY_AND_DISK_2 => "MEMORY_AND_DISK_2"
case MEMORY_AND_DISK_SER => "MEMORY_AND_DISK_SER"
case MEMORY_AND_DISK_SER_2 => "MEMORY_AND_DISK_SER_2"
case OFF_HEAP => "OFF_HEAP"
case _ => throw new IllegalArgumentException(s"Invalid StorageLevel: $level")
}
/**
* Spark2 doesn't support nestedPredicatePushdown,
* so fail it if [[supportNestedPredicatePushdown]] is true here.
*/
override def translateFilter(predicate: Expression,
supportNestedPredicatePushdown: Boolean = false): Option[Filter] = {
if (supportNestedPredicatePushdown) {
throw new UnsupportedOperationException("Nested predicate push down is not supported")
}
DataSourceStrategy.translateFilter(predicate)
}
override def makeColumnarBatch(vectors: Array[ColumnVector], numRows: Int): ColumnarBatch = {
val batch = new ColumnarBatch(vectors)
batch.setNumRows(numRows)
batch
}
/**
* Get parquet file reader
*
* @param vectorized true if vectorized reading is not prohibited due to schema, reading mode, etc
* @param sqlConf the [[SQLConf]] used for the read
* @param options passed as a param to the file format
* @param hadoopConf some configs will be set for the hadoopConf
* @return parquet file reader
*/
override def createParquetFileReader(vectorized: Boolean,
sqlConf: SQLConf,
options: Map[String, String],
hadoopConf: Configuration): SparkParquetReader = {
Spark24ParquetReader.build(vectorized, sqlConf, options, hadoopConf)
}
override def sqlExecutionWithNewExecutionId[T](sparkSession: SparkSession,
queryExecution: QueryExecution,
name: Option[String])(body: => T): T = {
SQLExecution.withNewExecutionId(sparkSession, queryExecution)(body)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy