All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.classification.CachingNaiveBayesClassifier Maven / Gradle / Ivy

There is a newer version: 10.0.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.classification;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.MultiTerms;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TotalHitCountCollector;
import org.apache.lucene.util.BytesRef;

/**
 * A simplistic Lucene based NaiveBayes classifier, with caching feature, see
 * http://en.wikipedia.org/wiki/Naive_Bayes_classifier
 * 

* This is NOT an online classifier. * * @lucene.experimental */ public class CachingNaiveBayesClassifier extends SimpleNaiveBayesClassifier { //for caching classes this will be the classification class list private final ArrayList cclasses = new ArrayList<>(); // it's a term-inmap style map, where the inmap contains class-hit pairs to the // upper term private final Map> termCClassHitCache = new HashMap<>(); // the term frequency in classes private final Map classTermFreq = new HashMap<>(); private boolean justCachedTerms; private int docsWithClassSize; /** * Creates a new NaiveBayes classifier with inside caching. If you want less memory usage you could call * {@link #reInitCache(int, boolean) reInitCache()}. * * @param indexReader the reader on the index to be used for classification * @param analyzer an {@link Analyzer} used to analyze unseen text * @param query a {@link Query} to eventually filter the docs used for training the classifier, or {@code null} * if all the indexed docs should be used * @param classFieldName the name of the field used as the output for the classifier * @param textFieldNames the name of the fields used as the inputs for the classifier */ public CachingNaiveBayesClassifier(IndexReader indexReader, Analyzer analyzer, Query query, String classFieldName, String... textFieldNames) { super(indexReader, analyzer, query, classFieldName, textFieldNames); // building the cache try { reInitCache(0, true); } catch (IOException e) { throw new RuntimeException(e); } } protected List> assignClassNormalizedList(String inputDocument) throws IOException { String[] tokenizedText = tokenize(inputDocument); List> assignedClasses = calculateLogLikelihood(tokenizedText); // normalization // The values transforms to a 0-1 range ArrayList> asignedClassesNorm = super.normClassificationResults(assignedClasses); return asignedClassesNorm; } private List> calculateLogLikelihood(String[] tokenizedText) throws IOException { // initialize the return List ArrayList> ret = new ArrayList<>(); for (BytesRef cclass : cclasses) { ClassificationResult cr = new ClassificationResult<>(cclass, 0d); ret.add(cr); } // for each word for (String word : tokenizedText) { // search with text:word for all class:c Map hitsInClasses = getWordFreqForClassess(word); // for each class for (BytesRef cclass : cclasses) { Integer hitsI = hitsInClasses.get(cclass); // if the word is out of scope hitsI could be null int hits = 0; if (hitsI != null) { hits = hitsI; } // num : count the no of times the word appears in documents of class c(+1) double num = hits + 1; // +1 is added because of add 1 smoothing // den : for the whole dictionary, count the no of times a word appears in documents of class c (+|V|) double den = classTermFreq.get(cclass) + docsWithClassSize; // P(w|c) = num/den double wordProbability = num / den; // modify the value in the result list item int removeIdx = -1; int i = 0; for (ClassificationResult cr : ret) { if (cr.getAssignedClass().equals(cclass)) { removeIdx = i; break; } i++; } if (removeIdx >= 0) { ClassificationResult toRemove = ret.get(removeIdx); ret.add(new ClassificationResult<>(toRemove.getAssignedClass(), toRemove.getScore() + Math.log(wordProbability))); ret.remove(removeIdx); } } } // log(P(d|c)) = log(P(w1|c))+...+log(P(wn|c)) return ret; } private Map getWordFreqForClassess(String word) throws IOException { Map insertPoint; insertPoint = termCClassHitCache.get(word); // if we get the answer from the cache if (insertPoint != null) { if (!insertPoint.isEmpty()) { return insertPoint; } } Map searched = new ConcurrentHashMap<>(); // if we dont get the answer, but it's relevant we must search it and insert to the cache if (insertPoint != null || !justCachedTerms) { for (BytesRef cclass : cclasses) { BooleanQuery.Builder booleanQuery = new BooleanQuery.Builder(); BooleanQuery.Builder subQuery = new BooleanQuery.Builder(); for (String textFieldName : textFieldNames) { subQuery.add(new BooleanClause(new TermQuery(new Term(textFieldName, word)), BooleanClause.Occur.SHOULD)); } booleanQuery.add(new BooleanClause(subQuery.build(), BooleanClause.Occur.MUST)); booleanQuery.add(new BooleanClause(new TermQuery(new Term(classFieldName, cclass)), BooleanClause.Occur.MUST)); if (query != null) { booleanQuery.add(query, BooleanClause.Occur.MUST); } TotalHitCountCollector totalHitCountCollector = new TotalHitCountCollector(); indexSearcher.search(booleanQuery.build(), totalHitCountCollector); int ret = totalHitCountCollector.getTotalHits(); if (ret != 0) { searched.put(cclass, ret); } } if (insertPoint != null) { // threadsafe and concurrent write termCClassHitCache.put(word, searched); } } return searched; } /** * This function is building the frame of the cache. The cache is storing the * word occurrences to the memory after those searched once. This cache can * made 2-100x speedup in proper use, but can eat lot of memory. There is an * option to lower the memory consume, if a word have really low occurrence in * the index you could filter it out. The other parameter is switching between * the term searching, if it true, just the terms in the skeleton will be * searched, but if it false the terms whoes not in the cache will be searched * out too (but not cached). * * @param minTermOccurrenceInCache Lower cache size with higher value. * @param justCachedTerms The switch for fully exclude low occurrence docs. * @throws IOException If there is a low-level I/O error. */ public void reInitCache(int minTermOccurrenceInCache, boolean justCachedTerms) throws IOException { this.justCachedTerms = justCachedTerms; this.docsWithClassSize = countDocsWithClass(); termCClassHitCache.clear(); cclasses.clear(); classTermFreq.clear(); // build the cache for the word Map frequencyMap = new HashMap<>(); for (String textFieldName : textFieldNames) { TermsEnum termsEnum = MultiTerms.getTerms(indexReader, textFieldName).iterator(); while (termsEnum.next() != null) { BytesRef term = termsEnum.term(); String termText = term.utf8ToString(); long frequency = termsEnum.docFreq(); Long lastfreq = frequencyMap.get(termText); if (lastfreq != null) frequency += lastfreq; frequencyMap.put(termText, frequency); } } for (Map.Entry entry : frequencyMap.entrySet()) { if (entry.getValue() > minTermOccurrenceInCache) { termCClassHitCache.put(entry.getKey(), new ConcurrentHashMap()); } } // fill the class list Terms terms = MultiTerms.getTerms(indexReader, classFieldName); TermsEnum termsEnum = terms.iterator(); while ((termsEnum.next()) != null) { cclasses.add(BytesRef.deepCopyOf(termsEnum.term())); } // fill the classTermFreq map for (BytesRef cclass : cclasses) { double avgNumberOfUniqueTerms = 0; for (String textFieldName : textFieldNames) { terms = MultiTerms.getTerms(indexReader, textFieldName); long numPostings = terms.getSumDocFreq(); // number of term/doc pairs avgNumberOfUniqueTerms += numPostings / (double) terms.getDocCount(); } int docsWithC = indexReader.docFreq(new Term(classFieldName, cclass)); classTermFreq.put(cclass, avgNumberOfUniqueTerms * docsWithC); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy