com.graphbuilder.curve.BSpline Maven / Gradle / Ivy
Show all versions of org.apache.servicemix.bundles.poi
/*
* Copyright (c) 2005, Graph Builder
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of Graph Builder nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.graphbuilder.curve;
/**
General non-rational B-Spline implementation where the degree can be specified.
For the B-Spline, there are 3 types of knot-vectors, uniform clamped, uniform unclamped,
and non-uniform. A uniform knot-vector means that the knots are equally spaced. A clamped
knot-vector means that the first k-knots and last k-knots are repeated, where k is the degree + 1.
Non-uniform means that the knot-values have no specific properties. For all 3 types, the
knot-values must be non-decreasing.
Here are some examples of uniform clamped knot vectors for degree 3:
number of control points = 4: [0, 0, 0, 0, 1, 1, 1, 1]
number of control points = 7: [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1]
The following is a figure of a B-Spline generated using a uniform clamped knot vector:
Here are some examples of uniform unclamped knot vectors for degree 3:
number of control points = 4: [0, 0.14, 0.29, 0.43, 0.57, 0.71, 0.86, 1] (about)
number of control points = 7: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
The following is a figure of a B-Spline generated using a uniform unclamped knot vector:
Note: Although the knot-values in the examples are between 0 and 1, this is not a requirement.
When the knot-vector is uniform clamped, the default interval is [0, 1]. When the knot-vector
is uniform unclamped, the default interval is [grad * degree, 1 - grad * degree], where grad is the
gradient or the knot-span. Specifying the knotVectorType as UNIFORM_CLAMPED or UNIFORM_UNCLAMPED
means that the internal knot-vector will not be used.
Note: The computation required is O(2^degree) or exponential. Increasing the degree by 1 means
that twice as many computations are done.
*/
public class BSpline extends ParametricCurve {
public static final int UNIFORM_CLAMPED = 0;
public static final int UNIFORM_UNCLAMPED = 1;
public static final int NON_UNIFORM = 2;
private static final ThreadLocal SHARED_DATA = new ThreadLocal(){
protected SharedData initialValue() {
return new SharedData();
}
};
private final SharedData sharedData = SHARED_DATA.get();
private static class SharedData {
private int[] a = new int[0]; // counter used for the a-function values (required length >= degree)
private int[] c = new int[0]; // counter used for bit patterns (required length >= degree)
private double[] knot = new double[0]; // (required length >= numPts + degree)
}
private ValueVector knotVector = new ValueVector(new double[] { 0, 0, 0, 0, 1, 1, 1, 1 }, 8);
private double t_min = 0.0;
private double t_max = 1.0;
private int sampleLimit = 1;
private int degree = 4; // the internal degree variable is always 1 plus the specified degree
private int knotVectorType = UNIFORM_CLAMPED;
private boolean useDefaultInterval = true;
public BSpline(ControlPath cp, GroupIterator gi) {
super(cp, gi);
}
protected void eval(double[] p) {
int dim = p.length - 1;
double t = p[dim];
int numPts = gi.getGroupSize();
gi.set(0,0);
for (int i = 0; i < numPts; i++) {
double w = N(t, i);
//double w = N(t, i, degree);
double[] loc = cp.getPoint(gi.next()).getLocation();
for (int j = 0; j < dim; j++)
p[j] += (loc[j] * w); //pt[i][j] * w);
}
}
/**
Specifies the interval that the curve should define itself on. The default interval is [0.0, 1.0].
When the knot-vector type is one of UNIFORM_CLAMPED or UNIFORM_UNCLAMPED and the useDefaultInterval
flag is true, then these values will not be used.
@throws IllegalArgumentException If t_min > t_max.
@see #t_min()
@see #t_max()
*/
public void setInterval(double t_min, double t_max) {
if (t_min > t_max)
throw new IllegalArgumentException("t_min <= t_max required.");
this.t_min = t_min;
this.t_max = t_max;
}
/**
Returns the starting interval value.
@see #setInterval(double, double)
@see #t_max()
*/
public double t_min() {
return t_min;
}
/**
Returns the finishing interval value.
@see #setInterval(double, double)
@see #t_min()
*/
public double t_max() {
return t_max;
}
public int getSampleLimit() {
return sampleLimit;
}
/**
Sets the sample-limit. For more information on the sample-limit, see the
BinaryCurveApproximationAlgorithm class. The default sample-limit is 1.
@throws IllegalArgumentException If sample-limit < 0.
@see com.graphbuilder.curve.BinaryCurveApproximationAlgorithm
@see #getSampleLimit()
*/
public void setSampleLimit(int limit) {
if (limit < 0)
throw new IllegalArgumentException("Sample-limit >= 0 required.");
sampleLimit = limit;
}
/**
Returns the degree of the curve.
@see #setDegree(int)
*/
public int getDegree() {
return degree - 1;
}
/**
Sets the degree of the curve. The degree specifies how many controls points have influence
when computing a single point on the curve. Specifically, degree + 1 control points are used.
The degree must be greater than 0. A degree of 1 is linear, 2 is quadratic, 3 is cubic, etc.
Warning: Increasing the degree by 1 doubles the number of computations required. The default
degree is 3 (cubic).
@see #getDegree()
@throws IllegalArgumentException If degree <= 0.
*/
public void setDegree(int d) {
if (d <= 0)
throw new IllegalArgumentException("Degree > 0 required.");
degree = d + 1;
}
/**
Returns the knot-vector for this curve.
@see #setKnotVector(ValueVector)
*/
public ValueVector getKnotVector() {
return knotVector;
}
/**
Sets the knot-vector for this curve. When the knot-vector type is one of UNIFORM_CLAMPED or
UNIFORM_UNCLAMPED then the values in the knot-vector will not be used.
@see #getKnotVector()
@throws IllegalArgumentException If the value-vector is null.
*/
public void setKnotVector(ValueVector v) {
if (v == null)
throw new IllegalArgumentException("Knot-vector cannot be null.");
knotVector = v;
}
/**
Returns the value of the useDefaultInterval flag.
@see #setUseDefaultInterval(boolean)
*/
public boolean getUseDefaultInterval() {
return useDefaultInterval;
}
/**
Sets the value of the useDefaultInterval flag. When the knot-vector type is one of UNIFORM_CLAMPED or
UNIFORM_UNCLAMPED and the useDefaultInterval flag is true, then default values will be computed for
t_min and t_max. Otherwise t_min and t_max are used as the interval.
@see #getUseDefaultInterval()
*/
public void setUseDefaultInterval(boolean b) {
useDefaultInterval = b;
}
/**
Returns the type of knot-vector to use.
@see #setKnotVectorType(int)
*/
public int getKnotVectorType() {
return knotVectorType;
}
/**
Sets the type of knot-vector to use. There are 3 types, UNIFORM_CLAMPED, UNIFORM_UNCLAMPED and NON_UNIFORM.
NON_UNIFORM can be thought of as user specified. UNIFORM_CLAMPED and UNIFORM_UNCLAMPED are standard
knot-vectors for the B-Spline.
@see #getKnotVectorType()
@throws IllegalArgumentException If the knot-vector type is unknown.
*/
public void setKnotVectorType(int type) {
if (type < 0 || type > 2)
throw new IllegalArgumentException("Unknown knot-vector type.");
knotVectorType = type;
}
/**
There are two types of requirements for this curve, common requirements and requirements that depend on the
knotVectorType. The common requirements are that the group-iterator must be in range and the number of
points (group size) must be greater than the degree. If the knot-vector type is NON_UNIFORM (user specified)
then there are additional requirements, otherwise there are no additional requirements.
The additional requirements when the knotVectorType is NON_UNIFORM are that the internal-knot vector must have
an exact size of degree + numPts + 1, where degree is specified by the setDegree method and numPts is the
group size. Also, the knot-vector values must be non-decreasing.
If any of these requirements are not met, then IllegalArgumentException is thrown
*/
public void appendTo(MultiPath mp) {
if (!gi.isInRange(0, cp.numPoints()))
throw new IllegalArgumentException("Group iterator not in range");
int numPts = gi.getGroupSize();
int f = numPts - degree;
if (f < 0)
throw new IllegalArgumentException("group iterator size - degree < 0");
int x = numPts + degree;
if (sharedData.knot.length < x)
sharedData.knot = new double[2 * x];
double t1 = t_min;
double t2 = t_max;
if (knotVectorType == NON_UNIFORM) {
if (knotVector.size() != x)
throw new IllegalArgumentException("knotVector.size(" + knotVector.size() + ") != " + x);
sharedData.knot[0] = knotVector.get(0);
for (int i = 1; i < x; i++) {
sharedData.knot[i] = knotVector.get(i);
if (sharedData.knot[i] < sharedData.knot[i-1])
throw new IllegalArgumentException("Knot not in sorted order! (knot[" + i + "] < knot[" + i + "-1])");
}
}
else if (knotVectorType == UNIFORM_UNCLAMPED) {
double grad = 1.0 / (x - 1);
for (int i = 0; i < x; i++)
sharedData.knot[i] = i * grad;
if (useDefaultInterval) {
t1 = (degree - 1) * grad;
t2 = 1.0 - (degree - 1) * grad;
}
}
else if (knotVectorType == UNIFORM_CLAMPED) {
double grad = 1.0 / (f + 1);
for (int i = 0; i < degree; i++)
sharedData.knot[i] = 0;
int j = degree;
for (int i = 1; i <= f; i++)
sharedData.knot[j++] = i * grad;
for (int i = j; i < x; i++)
sharedData.knot[i] = 1.0;
if (useDefaultInterval) {
t1 = 0.0;
t2 = 1.0;
}
}
if (sharedData.a.length < degree) {
sharedData.a = new int[2 * degree];
sharedData.c = new int[2 * degree];
}
double[] p = new double[mp.getDimension() + 1];
p[mp.getDimension()] = t1;
eval(p);
if (connect)
mp.lineTo(p);
else
mp.moveTo(p);
BinaryCurveApproximationAlgorithm.genPts(this, t1, t2, mp);
}
/**
Non-recursive implementation of the N-function.
*/
protected double N(double t, int i) {
double d = 0;
for (int j = 0; j < degree; j++) {
double t1 = sharedData.knot[i+j];
double t2 = sharedData.knot[i+j+1];
if (t >= t1 && t <= t2 && t1 != t2) {
int dm2 = degree - 2;
for (int k = degree - j - 1; k >= 0; k--)
sharedData.a[k] = 0;
if (j > 0) {
for (int k = 0; k < j; k++)
sharedData.c[k] = k;
sharedData.c[j] = Integer.MAX_VALUE;
}
else {
sharedData.c[0] = dm2;
sharedData.c[1] = degree;
}
int z = 0;
while (true) {
if (sharedData.c[z] < sharedData.c[z+1] - 1) {
double e = 1.0;
int bc = 0;
int y = dm2 - j;
int p = j - 1;
for (int m = dm2, n = degree; m >= 0; m--, n--) {
if (p >= 0 && sharedData.c[p] == m) {
int w = i + bc;
double kd = sharedData.knot[w+n];
e *= (kd - t) / (kd - sharedData.knot[w+1]);
bc++;
p--;
}
else {
int w = i + sharedData.a[y];
double kw = sharedData.knot[w];
e *= (t - kw) / (sharedData.knot[w+n-1] - kw);
y--;
}
}
// this code updates the a-counter
if (j > 0) {
int g = 0;
boolean reset = false;
while (true) {
sharedData.a[g]++;
if (sharedData.a[g] > j) {
g++;
reset = true;
}
else {
if (reset) {
for (int h = g - 1; h >= 0; h--)
sharedData.a[h] = sharedData.a[g];
}
break;
}
}
}
d += e;
// this code updates the bit-counter
sharedData.c[z]++;
if (sharedData.c[z] > dm2) break;
for (int k = 0; k < z; k++)
sharedData.c[k] = k;
z = 0;
}
else {
z++;
}
}
break; // required to prevent spikes
}
}
return d;
}
/*
The recursive implementation of the N-function (not used) is below. In addition to being
slower, the recursive implementation of the N-function has another problem which relates to
the base case. Note: the reason the recursive implementation is slower is because there
are a lot of repetitive calculations.
Some definitions of the N-function give the base case as t >= knot[i] && t < knot[i+1] or
t > knot[i] && t <= knot[i+1]. To see why this is a problem, consider evaluating t on the
range [0, 1] with the Bezier Curve knot vector [0,0,0,...,1,1,1]. Then, trying to evaluate
t == 1 or t == 0 won't work. Changing the base case to the one below (with equal signs on
both comparisons) leads to a problem known as spikes. A curve will have spikes at places
where t falls on a knot because when equality is used on both comparisons, the value of t
will have 2 regions of influence.
*/
/*private double N(double t, int i, int k) {
if (k == 1) {
if (t >= knot[i] && t <= knot[i+1] && knot[i] != knot[i+1]) return 1.0;
return 0.0;
}
double n1 = N(t, i, k-1);
double n2 = N(t, i+1, k-1);
double a = 0.0;
double b = 0.0;
if (n1 != 0) a = (t - knot[i]) / (knot[i+k-1] - knot[i]);
if (n2 != 0) b = (knot[i+k] - t) / (knot[i+k] - knot[i+1]);
return a * n1 + b * n2;
}*/
public void resetMemory() {
if (sharedData.a.length > 0) {
sharedData.a = new int[0];
sharedData.c = new int[0];
}
if (sharedData.knot.length > 0)
sharedData.knot = new double[0];
}
}