All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.solr.util.LongPriorityQueue Maven / Gradle / Ivy

There is a newer version: 9.7.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.solr.util;

import java.util.Arrays;

/**
 * A native long priority queue.
 *
 * @lucene.internal
 */
public class LongPriorityQueue {
  protected int size; // number of elements currently in the queue
  protected int currentCapacity; // number of elements the queue can hold w/o expanding
  protected int maxSize; // max number of elements allowed in the queue
  protected long[] heap;
  protected final long sentinel; // represents a null return value

  public LongPriorityQueue(int initialSize, int maxSize, long sentinel) {
    this.maxSize = maxSize;
    this.sentinel = sentinel;
    initialize(initialSize);
  }

  protected void initialize(int sz) {
    int heapSize;
    if (0 == sz)
      // We allocate 1 extra to avoid if statement in top()
      heapSize = 2;
    else {
      // NOTE: we add +1 because all access to heap is
      // 1-based not 0-based.  heap[0] is unused.
      heapSize = Math.max(sz, sz + 1); // handle overflow
    }
    heap = new long[heapSize];
    currentCapacity = sz;
  }

  public int getCurrentCapacity() {
    return currentCapacity;
  }

  public void resize(int sz) {
    int heapSize;
    if (sz > maxSize) {
      maxSize = sz;
    }
    if (0 == sz)
      // We allocate 1 extra to avoid if statement in top()
      heapSize = 2;
    else {
      heapSize = Math.max(sz, sz + 1); // handle overflow
    }
    heap = Arrays.copyOf(heap, heapSize);
    currentCapacity = sz;
  }

  /**
   * Adds an object to a PriorityQueue in log(size) time. If one tries to add more objects than
   * maxSize from initialize an {@link ArrayIndexOutOfBoundsException} is thrown.
   *
   * @return the new 'top' element in the queue.
   */
  public long add(long element) {
    if (size >= currentCapacity) {
      int newSize = Math.min(currentCapacity << 1, maxSize);
      if (newSize < currentCapacity) newSize = Integer.MAX_VALUE; // handle overflow
      resize(newSize);
    }
    size++;
    heap[size] = element;
    upHeap();
    return heap[1];
  }

  /**
   * Adds an object to a PriorityQueue in log(size) time. If one tries to add more objects than the
   * current capacity, an {@link ArrayIndexOutOfBoundsException} is thrown.
   */
  public void addNoCheck(long element) {
    ++size;
    heap[size] = element;
    upHeap();
  }

  /**
   * Adds an object to a PriorityQueue in log(size) time. It returns the smallest object (if any)
   * that was dropped off the heap because it was full, or the sentinel value.
   *
   * 

This can be the given parameter (in case it is smaller than the full heap's minimum, and * couldn't be added), or another object that was previously the smallest value in the heap and * now has been replaced by a larger one, or null if the queue wasn't yet full with maxSize * elements. */ public long insertWithOverflow(long element) { if (size < maxSize) { add(element); return sentinel; } else if (element > heap[1]) { long ret = heap[1]; heap[1] = element; updateTop(); return ret; } else { return element; } } /** * inserts the element and returns true if this element caused another element to be dropped from * the queue. */ public boolean insert(long element) { if (size < maxSize) { add(element); return false; } else if (element > heap[1]) { // long ret = heap[1]; heap[1] = element; updateTop(); return true; } else { return false; } } /** Returns the least element of the PriorityQueue in constant time. */ public long top() { return heap[1]; } /** * Removes and returns the least element of the PriorityQueue in log(size) time. Only valid if * size() > 0. */ public long pop() { long result = heap[1]; // save first value heap[1] = heap[size]; // move last to first size--; downHeap(); // adjust heap return result; } /** * Should be called when the Object at top changes values. * * @return the new 'top' element. */ public long updateTop() { downHeap(); return heap[1]; } /** Returns the number of elements currently stored in the PriorityQueue. */ public int size() { return size; } /** * Returns the array used to hold the heap, with the smallest item at array[1] and the last (but * not necessarily largest) at array[size()]. This is *not* fully sorted. */ public long[] getInternalArray() { return heap; } /** * Pops the smallest n items from the heap, placing them in the internal array at arr[size] * through arr[size-(n-1)] with the smallest (first element popped) being at arr[size]. The * internal array is returned. */ public long[] sort(int n) { while (--n >= 0) { long result = heap[1]; // save first value heap[1] = heap[size]; // move last to first heap[size] = result; // place it last size--; downHeap(); // adjust heap } return heap; } /** Removes all entries from the PriorityQueue. */ public void clear() { size = 0; } private void upHeap() { int i = size; long node = heap[i]; // save bottom node int j = i >>> 1; while (j > 0 && node < heap[j]) { heap[i] = heap[j]; // shift parents down i = j; j = j >>> 1; } heap[i] = node; // install saved node } private void downHeap() { int i = 1; long node = heap[i]; // save top node int j = i << 1; // find smaller child int k = j + 1; if (k <= size && heap[k] < heap[j]) { j = k; } while (j <= size && heap[j] < node) { heap[i] = heap[j]; // shift up child i = j; j = i << 1; k = j + 1; if (k <= size && heap[k] < heap[j]) { j = k; } } heap[i] = node; // install saved node } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy