All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.sql.Column.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql

import scala.jdk.CollectionConverters._

import org.apache.spark.annotation.Stable
import org.apache.spark.internal.{Logging, MDC}
import org.apache.spark.internal.LogKeys.{LEFT_EXPR, RIGHT_EXPR}
import org.apache.spark.sql.catalyst.parser.DataTypeParser
import org.apache.spark.sql.catalyst.trees.CurrentOrigin.withOrigin
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.{lit, map}
import org.apache.spark.sql.internal.ColumnNode
import org.apache.spark.sql.types._
import org.apache.spark.util.ArrayImplicits._

private[spark] object Column {

  def apply(colName: String): Column = new Column(colName)

  def apply(node: => ColumnNode): Column = withOrigin(new Column(node))

  /**
   * Invoke a function with an options map as its last argument. If there are no options, its
   * column is dropped.
   */
  private[sql] def fnWithOptions(
      name: String,
      options: Iterator[(String, String)],
      arguments: Column*): Column = {
    val augmentedArguments = if (options.hasNext) {
      val flattenedKeyValueIterator = options.flatMap { case (k, v) =>
        Iterator(lit(k), lit(v))
      }
      arguments :+ map(flattenedKeyValueIterator.toSeq: _*)
    } else {
      arguments
    }
    Column.fn(name, augmentedArguments: _*)
  }

  private[spark] def fn(name: String, inputs: Column*): Column = {
    fn(name, isDistinct = false, inputs: _*)
  }

  private[spark] def fn(name: String, isDistinct: Boolean, inputs: Column*): Column = {
    fn(name, isDistinct = isDistinct, isInternal = false, inputs)
  }

  private[spark] def internalFn(name: String, inputs: Column*): Column = {
    fn(name, isDistinct = false, isInternal = true, inputs)
  }

  private def fn(
      name: String,
      isDistinct: Boolean,
      isInternal: Boolean,
      inputs: Seq[Column]): Column = withOrigin {
    Column(
      internal.UnresolvedFunction(
        name,
        inputs.map(_.node),
        isDistinct = isDistinct,
        isInternal = isInternal))
  }
}

/**
 * A [[Column]] where an [[Encoder]] has been given for the expected input and return type. To
 * create a [[TypedColumn]], use the `as` function on a [[Column]].
 *
 * @tparam T
 *   The input type expected for this expression. Can be `Any` if the expression is type checked
 *   by the analyzer instead of the compiler (i.e. `expr("sum(...)")`).
 * @tparam U
 *   The output type of this column.
 *
 * @since 1.6.0
 */
@Stable
class TypedColumn[-T, U](node: ColumnNode, private[sql] val encoder: Encoder[U])
    extends Column(node) {

  /**
   * Gives the [[TypedColumn]] a name (alias). If the current `TypedColumn` has metadata
   * associated with it, this metadata will be propagated to the new column.
   *
   * @group expr_ops
   * @since 2.0.0
   */
  override def name(alias: String): TypedColumn[T, U] =
    new TypedColumn[T, U](super.name(alias).node, encoder)

}

/**
 * A column that will be computed based on the data in a `DataFrame`.
 *
 * A new column can be constructed based on the input columns present in a DataFrame:
 *
 * {{{
 *   df("columnName")            // On a specific `df` DataFrame.
 *   col("columnName")           // A generic column not yet associated with a DataFrame.
 *   col("columnName.field")     // Extracting a struct field
 *   col("`a.column.with.dots`") // Escape `.` in column names.
 *   $"columnName"               // Scala short hand for a named column.
 * }}}
 *
 * [[Column]] objects can be composed to form complex expressions:
 *
 * {{{
 *   $"a" + 1
 *   $"a" === $"b"
 * }}}
 *
 * @groupname java_expr_ops Java-specific expression operators
 * @groupname expr_ops Expression operators
 * @groupname df_ops DataFrame functions
 * @groupname Ungrouped Support functions for DataFrames
 *
 * @since 1.3.0
 */
@Stable
class Column(val node: ColumnNode) extends Logging {
  private[sql] def this(name: String, planId: Option[Long]) = this(withOrigin {
    name match {
      case "*" => internal.UnresolvedStar(None, planId)
      case _ if name.endsWith(".*") => internal.UnresolvedStar(Option(name), planId)
      case _ => internal.UnresolvedAttribute(name, planId)
    }
  })

  def this(name: String) = this(name, None)

  private def fn(name: String): Column = {
    Column.fn(name, this)
  }
  private def fn(name: String, other: Column): Column = {
    Column.fn(name, this, other)
  }
  private def fn(name: String, other: Any): Column = {
    Column.fn(name, this, lit(other))
  }

  override def toString: String = node.sql

  override def equals(that: Any): Boolean = that match {
    case that: Column => that.node.normalized == this.node.normalized
    case _ => false
  }

  override def hashCode: Int = this.node.normalized.hashCode()

  /**
   * Provides a type hint about the expected return value of this column. This information can be
   * used by operations such as `select` on a [[Dataset]] to automatically convert the results
   * into the correct JVM types.
   * @since 1.6.0
   */
  def as[U: Encoder]: TypedColumn[Any, U] = new TypedColumn[Any, U](node, implicitly[Encoder[U]])

  /**
   * Extracts a value or values from a complex type. The following types of extraction are
   * supported: 
  • Given an Array, an integer ordinal can be used to retrieve a single * value.
  • Given a Map, a key of the correct type can be used to retrieve an individual * value.
  • Given a Struct, a string fieldName can be used to extract that field.
  • *
  • Given an Array of Structs, a string fieldName can be used to extract filed of every * struct in that array, and return an Array of fields.
* @group expr_ops * @since 1.4.0 */ def apply(extraction: Any): Column = Column { internal.UnresolvedExtractValue(node, lit(extraction).node) } /** * Unary minus, i.e. negate the expression. * {{{ * // Scala: select the amount column and negates all values. * df.select( -df("amount") ) * * // Java: * import static org.apache.spark.sql.functions.*; * df.select( negate(col("amount") ); * }}} * * @group expr_ops * @since 1.3.0 */ def unary_- : Column = fn("negative") /** * Inversion of boolean expression, i.e. NOT. * {{{ * // Scala: select rows that are not active (isActive === false) * df.filter( !df("isActive") ) * * // Java: * import static org.apache.spark.sql.functions.*; * df.filter( not(df.col("isActive")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def unary_! : Column = fn("!") /** * Equality test. * {{{ * // Scala: * df.filter( df("colA") === df("colB") ) * * // Java * import static org.apache.spark.sql.functions.*; * df.filter( col("colA").equalTo(col("colB")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def ===(other: Any): Column = { val right = lit(other) checkTrivialPredicate(right) fn("=", other) } private def checkTrivialPredicate(right: Column): Unit = { if (this == right) { logWarning( log"Constructing trivially true equals predicate, " + log"'${MDC(LEFT_EXPR, this)} == ${MDC(RIGHT_EXPR, right)}'. " + log"Perhaps you need to use aliases.") } } /** * Equality test. * {{{ * // Scala: * df.filter( df("colA") === df("colB") ) * * // Java * import static org.apache.spark.sql.functions.*; * df.filter( col("colA").equalTo(col("colB")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def equalTo(other: Any): Column = this === other /** * Inequality test. * {{{ * // Scala: * df.select( df("colA") =!= df("colB") ) * df.select( !(df("colA") === df("colB")) ) * * // Java: * import static org.apache.spark.sql.functions.*; * df.filter( col("colA").notEqual(col("colB")) ); * }}} * * @group expr_ops * @since 2.0.0 */ def =!=(other: Any): Column = !(this === other) /** * Inequality test. * {{{ * // Scala: * df.select( df("colA") !== df("colB") ) * df.select( !(df("colA") === df("colB")) ) * * // Java: * import static org.apache.spark.sql.functions.*; * df.filter( col("colA").notEqual(col("colB")) ); * }}} * * @group expr_ops * @since 1.3.0 */ @deprecated("!== does not have the same precedence as ===, use =!= instead", "2.0.0") def !==(other: Any): Column = this =!= other /** * Inequality test. * {{{ * // Scala: * df.select( df("colA") !== df("colB") ) * df.select( !(df("colA") === df("colB")) ) * * // Java: * import static org.apache.spark.sql.functions.*; * df.filter( col("colA").notEqual(col("colB")) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def notEqual(other: Any): Column = this =!= other /** * Greater than. * {{{ * // Scala: The following selects people older than 21. * people.select( people("age") > 21 ) * * // Java: * import static org.apache.spark.sql.functions.*; * people.select( people.col("age").gt(21) ); * }}} * * @group expr_ops * @since 1.3.0 */ def >(other: Any): Column = fn(">", other) /** * Greater than. * {{{ * // Scala: The following selects people older than 21. * people.select( people("age") > lit(21) ) * * // Java: * import static org.apache.spark.sql.functions.*; * people.select( people.col("age").gt(21) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def gt(other: Any): Column = this > other /** * Less than. * {{{ * // Scala: The following selects people younger than 21. * people.select( people("age") < 21 ) * * // Java: * people.select( people.col("age").lt(21) ); * }}} * * @group expr_ops * @since 1.3.0 */ def <(other: Any): Column = fn("<", other) /** * Less than. * {{{ * // Scala: The following selects people younger than 21. * people.select( people("age") < 21 ) * * // Java: * people.select( people.col("age").lt(21) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def lt(other: Any): Column = this < other /** * Less than or equal to. * {{{ * // Scala: The following selects people age 21 or younger than 21. * people.select( people("age") <= 21 ) * * // Java: * people.select( people.col("age").leq(21) ); * }}} * * @group expr_ops * @since 1.3.0 */ def <=(other: Any): Column = fn("<=", other) /** * Less than or equal to. * {{{ * // Scala: The following selects people age 21 or younger than 21. * people.select( people("age") <= 21 ) * * // Java: * people.select( people.col("age").leq(21) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def leq(other: Any): Column = this <= other /** * Greater than or equal to an expression. * {{{ * // Scala: The following selects people age 21 or older than 21. * people.select( people("age") >= 21 ) * * // Java: * people.select( people.col("age").geq(21) ) * }}} * * @group expr_ops * @since 1.3.0 */ def >=(other: Any): Column = fn(">=", other) /** * Greater than or equal to an expression. * {{{ * // Scala: The following selects people age 21 or older than 21. * people.select( people("age") >= 21 ) * * // Java: * people.select( people.col("age").geq(21) ) * }}} * * @group java_expr_ops * @since 1.3.0 */ def geq(other: Any): Column = this >= other /** * Equality test that is safe for null values. * * @group expr_ops * @since 1.3.0 */ def <=>(other: Any): Column = { val right = lit(other) checkTrivialPredicate(right) fn("<=>", right) } /** * Equality test that is safe for null values. * * @group java_expr_ops * @since 1.3.0 */ def eqNullSafe(other: Any): Column = this <=> other /** * Evaluates a list of conditions and returns one of multiple possible result expressions. If * otherwise is not defined at the end, null is returned for unmatched conditions. * * {{{ * // Example: encoding gender string column into integer. * * // Scala: * people.select(when(people("gender") === "male", 0) * .when(people("gender") === "female", 1) * .otherwise(2)) * * // Java: * people.select(when(col("gender").equalTo("male"), 0) * .when(col("gender").equalTo("female"), 1) * .otherwise(2)) * }}} * * @group expr_ops * @since 1.4.0 */ def when(condition: Column, value: Any): Column = Column { node match { case internal.CaseWhenOtherwise(branches, None, _) => internal.CaseWhenOtherwise(branches :+ ((condition.node, lit(value).node)), None) case internal.CaseWhenOtherwise(_, Some(_), _) => throw new IllegalArgumentException("when() cannot be applied once otherwise() is applied") case _ => throw new IllegalArgumentException( "when() can only be applied on a Column previously generated by when() function") } } /** * Evaluates a list of conditions and returns one of multiple possible result expressions. If * otherwise is not defined at the end, null is returned for unmatched conditions. * * {{{ * // Example: encoding gender string column into integer. * * // Scala: * people.select(when(people("gender") === "male", 0) * .when(people("gender") === "female", 1) * .otherwise(2)) * * // Java: * people.select(when(col("gender").equalTo("male"), 0) * .when(col("gender").equalTo("female"), 1) * .otherwise(2)) * }}} * * @group expr_ops * @since 1.4.0 */ def otherwise(value: Any): Column = Column { node match { case internal.CaseWhenOtherwise(branches, None, _) => internal.CaseWhenOtherwise(branches, Option(lit(value).node)) case internal.CaseWhenOtherwise(_, Some(_), _) => throw new IllegalArgumentException( "otherwise() can only be applied once on a Column previously generated by when()") case _ => throw new IllegalArgumentException( "otherwise() can only be applied on a Column previously generated by when()") } } /** * True if the current column is between the lower bound and upper bound, inclusive. * * @group java_expr_ops * @since 1.4.0 */ def between(lowerBound: Any, upperBound: Any): Column = { (this >= lowerBound) && (this <= upperBound) } /** * True if the current expression is NaN. * * @group expr_ops * @since 1.5.0 */ def isNaN: Column = fn("isNaN") /** * True if the current expression is null. * * @group expr_ops * @since 1.3.0 */ def isNull: Column = fn("isNull") /** * True if the current expression is NOT null. * * @group expr_ops * @since 1.3.0 */ def isNotNull: Column = fn("isNotNull") /** * Boolean OR. * {{{ * // Scala: The following selects people that are in school or employed. * people.filter( people("inSchool") || people("isEmployed") ) * * // Java: * people.filter( people.col("inSchool").or(people.col("isEmployed")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def ||(other: Any): Column = fn("or", other) /** * Boolean OR. * {{{ * // Scala: The following selects people that are in school or employed. * people.filter( people("inSchool") || people("isEmployed") ) * * // Java: * people.filter( people.col("inSchool").or(people.col("isEmployed")) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def or(other: Column): Column = this || other /** * Boolean AND. * {{{ * // Scala: The following selects people that are in school and employed at the same time. * people.select( people("inSchool") && people("isEmployed") ) * * // Java: * people.select( people.col("inSchool").and(people.col("isEmployed")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def &&(other: Any): Column = fn("and", other) /** * Boolean AND. * {{{ * // Scala: The following selects people that are in school and employed at the same time. * people.select( people("inSchool") && people("isEmployed") ) * * // Java: * people.select( people.col("inSchool").and(people.col("isEmployed")) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def and(other: Column): Column = this && other /** * Sum of this expression and another expression. * {{{ * // Scala: The following selects the sum of a person's height and weight. * people.select( people("height") + people("weight") ) * * // Java: * people.select( people.col("height").plus(people.col("weight")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def +(other: Any): Column = fn("+", other) /** * Sum of this expression and another expression. * {{{ * // Scala: The following selects the sum of a person's height and weight. * people.select( people("height") + people("weight") ) * * // Java: * people.select( people.col("height").plus(people.col("weight")) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def plus(other: Any): Column = this + other /** * Subtraction. Subtract the other expression from this expression. * {{{ * // Scala: The following selects the difference between people's height and their weight. * people.select( people("height") - people("weight") ) * * // Java: * people.select( people.col("height").minus(people.col("weight")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def -(other: Any): Column = fn("-", other) /** * Subtraction. Subtract the other expression from this expression. * {{{ * // Scala: The following selects the difference between people's height and their weight. * people.select( people("height") - people("weight") ) * * // Java: * people.select( people.col("height").minus(people.col("weight")) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def minus(other: Any): Column = this - other /** * Multiplication of this expression and another expression. * {{{ * // Scala: The following multiplies a person's height by their weight. * people.select( people("height") * people("weight") ) * * // Java: * people.select( people.col("height").multiply(people.col("weight")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def *(other: Any): Column = fn("*", other) /** * Multiplication of this expression and another expression. * {{{ * // Scala: The following multiplies a person's height by their weight. * people.select( people("height") * people("weight") ) * * // Java: * people.select( people.col("height").multiply(people.col("weight")) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def multiply(other: Any): Column = this * other /** * Division this expression by another expression. * {{{ * // Scala: The following divides a person's height by their weight. * people.select( people("height") / people("weight") ) * * // Java: * people.select( people.col("height").divide(people.col("weight")) ); * }}} * * @group expr_ops * @since 1.3.0 */ def /(other: Any): Column = fn("/", other) /** * Division this expression by another expression. * {{{ * // Scala: The following divides a person's height by their weight. * people.select( people("height") / people("weight") ) * * // Java: * people.select( people.col("height").divide(people.col("weight")) ); * }}} * * @group java_expr_ops * @since 1.3.0 */ def divide(other: Any): Column = this / other /** * Modulo (a.k.a. remainder) expression. * * @group expr_ops * @since 1.3.0 */ def %(other: Any): Column = fn("%", other) /** * Modulo (a.k.a. remainder) expression. * * @group java_expr_ops * @since 1.3.0 */ def mod(other: Any): Column = this % other /** * A boolean expression that is evaluated to true if the value of this expression is contained * by the evaluated values of the arguments. * * Note: Since the type of the elements in the list are inferred only during the run time, the * elements will be "up-casted" to the most common type for comparison. For eg: 1) In the case * of "Int vs String", the "Int" will be up-casted to "String" and the comparison will look like * "String vs String". 2) In the case of "Float vs Double", the "Float" will be up-casted to * "Double" and the comparison will look like "Double vs Double" * * @group expr_ops * @since 1.5.0 */ @scala.annotation.varargs def isin(list: Any*): Column = Column.fn("in", this +: list.map(lit): _*) /** * A boolean expression that is evaluated to true if the value of this expression is contained * by the provided collection. * * Note: Since the type of the elements in the collection are inferred only during the run time, * the elements will be "up-casted" to the most common type for comparison. For eg: 1) In the * case of "Int vs String", the "Int" will be up-casted to "String" and the comparison will look * like "String vs String". 2) In the case of "Float vs Double", the "Float" will be up-casted * to "Double" and the comparison will look like "Double vs Double" * * @group expr_ops * @since 2.4.0 */ def isInCollection(values: scala.collection.Iterable[_]): Column = isin(values.toSeq: _*) /** * A boolean expression that is evaluated to true if the value of this expression is contained * by the provided collection. * * Note: Since the type of the elements in the collection are inferred only during the run time, * the elements will be "up-casted" to the most common type for comparison. For eg: 1) In the * case of "Int vs String", the "Int" will be up-casted to "String" and the comparison will look * like "String vs String". 2) In the case of "Float vs Double", the "Float" will be up-casted * to "Double" and the comparison will look like "Double vs Double" * * @group java_expr_ops * @since 2.4.0 */ def isInCollection(values: java.lang.Iterable[_]): Column = isInCollection(values.asScala) /** * SQL like expression. Returns a boolean column based on a SQL LIKE match. * * @group expr_ops * @since 1.3.0 */ def like(literal: String): Column = fn("like", literal) /** * SQL RLIKE expression (LIKE with Regex). Returns a boolean column based on a regex match. * * @group expr_ops * @since 1.3.0 */ def rlike(literal: String): Column = fn("rlike", literal) /** * SQL ILIKE expression (case insensitive LIKE). * * @group expr_ops * @since 3.3.0 */ def ilike(literal: String): Column = fn("ilike", literal) /** * An expression that gets an item at position `ordinal` out of an array, or gets a value by key * `key` in a `MapType`. * * @group expr_ops * @since 1.3.0 */ def getItem(key: Any): Column = apply(key) // scalastyle:off line.size.limit /** * An expression that adds/replaces field in `StructType` by name. * * {{{ * val df = sql("SELECT named_struct('a', 1, 'b', 2) struct_col") * df.select($"struct_col".withField("c", lit(3))) * // result: {"a":1,"b":2,"c":3} * * val df = sql("SELECT named_struct('a', 1, 'b', 2) struct_col") * df.select($"struct_col".withField("b", lit(3))) * // result: {"a":1,"b":3} * * val df = sql("SELECT CAST(NULL AS struct) struct_col") * df.select($"struct_col".withField("c", lit(3))) * // result: null of type struct * * val df = sql("SELECT named_struct('a', 1, 'b', 2, 'b', 3) struct_col") * df.select($"struct_col".withField("b", lit(100))) * // result: {"a":1,"b":100,"b":100} * * val df = sql("SELECT named_struct('a', named_struct('a', 1, 'b', 2)) struct_col") * df.select($"struct_col".withField("a.c", lit(3))) * // result: {"a":{"a":1,"b":2,"c":3}} * * val df = sql("SELECT named_struct('a', named_struct('b', 1), 'a', named_struct('c', 2)) struct_col") * df.select($"struct_col".withField("a.c", lit(3))) * // result: org.apache.spark.sql.AnalysisException: Ambiguous reference to fields * }}} * * This method supports adding/replacing nested fields directly e.g. * * {{{ * val df = sql("SELECT named_struct('a', named_struct('a', 1, 'b', 2)) struct_col") * df.select($"struct_col".withField("a.c", lit(3)).withField("a.d", lit(4))) * // result: {"a":{"a":1,"b":2,"c":3,"d":4}} * }}} * * However, if you are going to add/replace multiple nested fields, it is more optimal to * extract out the nested struct before adding/replacing multiple fields e.g. * * {{{ * val df = sql("SELECT named_struct('a', named_struct('a', 1, 'b', 2)) struct_col") * df.select($"struct_col".withField("a", $"struct_col.a".withField("c", lit(3)).withField("d", lit(4)))) * // result: {"a":{"a":1,"b":2,"c":3,"d":4}} * }}} * * @group expr_ops * @since 3.1.0 */ // scalastyle:on line.size.limit def withField(fieldName: String, col: Column): Column = { require(fieldName != null, "fieldName cannot be null") require(col != null, "col cannot be null") Column(internal.UpdateFields(node, fieldName, Option(col.node))) } // scalastyle:off line.size.limit /** * An expression that drops fields in `StructType` by name. This is a no-op if schema doesn't * contain field name(s). * * {{{ * val df = sql("SELECT named_struct('a', 1, 'b', 2) struct_col") * df.select($"struct_col".dropFields("b")) * // result: {"a":1} * * val df = sql("SELECT named_struct('a', 1, 'b', 2) struct_col") * df.select($"struct_col".dropFields("c")) * // result: {"a":1,"b":2} * * val df = sql("SELECT named_struct('a', 1, 'b', 2, 'c', 3) struct_col") * df.select($"struct_col".dropFields("b", "c")) * // result: {"a":1} * * val df = sql("SELECT named_struct('a', 1, 'b', 2) struct_col") * df.select($"struct_col".dropFields("a", "b")) * // result: org.apache.spark.sql.AnalysisException: [DATATYPE_MISMATCH.CANNOT_DROP_ALL_FIELDS] Cannot resolve "update_fields(struct_col, dropfield(), dropfield())" due to data type mismatch: Cannot drop all fields in struct.; * * val df = sql("SELECT CAST(NULL AS struct) struct_col") * df.select($"struct_col".dropFields("b")) * // result: null of type struct * * val df = sql("SELECT named_struct('a', 1, 'b', 2, 'b', 3) struct_col") * df.select($"struct_col".dropFields("b")) * // result: {"a":1} * * val df = sql("SELECT named_struct('a', named_struct('a', 1, 'b', 2)) struct_col") * df.select($"struct_col".dropFields("a.b")) * // result: {"a":{"a":1}} * * val df = sql("SELECT named_struct('a', named_struct('b', 1), 'a', named_struct('c', 2)) struct_col") * df.select($"struct_col".dropFields("a.c")) * // result: org.apache.spark.sql.AnalysisException: Ambiguous reference to fields * }}} * * This method supports dropping multiple nested fields directly e.g. * * {{{ * val df = sql("SELECT named_struct('a', named_struct('a', 1, 'b', 2)) struct_col") * df.select($"struct_col".dropFields("a.b", "a.c")) * // result: {"a":{"a":1}} * }}} * * However, if you are going to drop multiple nested fields, it is more optimal to extract out * the nested struct before dropping multiple fields from it e.g. * * {{{ * val df = sql("SELECT named_struct('a', named_struct('a', 1, 'b', 2)) struct_col") * df.select($"struct_col".withField("a", $"struct_col.a".dropFields("b", "c"))) * // result: {"a":{"a":1}} * }}} * * @group expr_ops * @since 3.1.0 */ // scalastyle:on line.size.limit def dropFields(fieldNames: String*): Column = Column { fieldNames.tail.foldLeft(internal.UpdateFields(node, fieldNames.head)) { (resExpr, fieldName) => internal.UpdateFields(resExpr, fieldName) } } /** * An expression that gets a field by name in a `StructType`. * * @group expr_ops * @since 1.3.0 */ def getField(fieldName: String): Column = apply(fieldName) /** * An expression that returns a substring. * @param startPos * expression for the starting position. * @param len * expression for the length of the substring. * * @group expr_ops * @since 1.3.0 */ def substr(startPos: Column, len: Column): Column = Column.fn("substr", this, startPos, len) /** * An expression that returns a substring. * @param startPos * starting position. * @param len * length of the substring. * * @group expr_ops * @since 1.3.0 */ def substr(startPos: Int, len: Int): Column = substr(lit(startPos), lit(len)) /** * Contains the other element. Returns a boolean column based on a string match. * * @group expr_ops * @since 1.3.0 */ def contains(other: Any): Column = fn("contains", other) /** * String starts with. Returns a boolean column based on a string match. * * @group expr_ops * @since 1.3.0 */ def startsWith(other: Column): Column = fn("startswith", other) /** * String starts with another string literal. Returns a boolean column based on a string match. * * @group expr_ops * @since 1.3.0 */ def startsWith(literal: String): Column = startsWith(lit(literal)) /** * String ends with. Returns a boolean column based on a string match. * * @group expr_ops * @since 1.3.0 */ def endsWith(other: Column): Column = fn("endswith", other) /** * String ends with another string literal. Returns a boolean column based on a string match. * * @group expr_ops * @since 1.3.0 */ def endsWith(literal: String): Column = endsWith(lit(literal)) /** * Gives the column an alias. Same as `as`. * {{{ * // Renames colA to colB in select output. * df.select($"colA".alias("colB")) * }}} * * @group expr_ops * @since 1.4.0 */ def alias(alias: String): Column = name(alias) /** * Gives the column an alias. * {{{ * // Renames colA to colB in select output. * df.select($"colA".as("colB")) * }}} * * If the current column has metadata associated with it, this metadata will be propagated to * the new column. If this not desired, use the API `as(alias: String, metadata: Metadata)` with * explicit metadata. * * @group expr_ops * @since 1.3.0 */ def as(alias: String): Column = name(alias) /** * (Scala-specific) Assigns the given aliases to the results of a table generating function. * {{{ * // Renames colA to colB in select output. * df.select(explode($"myMap").as("key" :: "value" :: Nil)) * }}} * * @group expr_ops * @since 1.4.0 */ def as(aliases: Seq[String]): Column = Column(internal.Alias(node, aliases)) /** * Assigns the given aliases to the results of a table generating function. * {{{ * // Renames colA to colB in select output. * df.select(explode($"myMap").as("key" :: "value" :: Nil)) * }}} * * @group expr_ops * @since 1.4.0 */ def as(aliases: Array[String]): Column = as(aliases.toImmutableArraySeq) /** * Gives the column an alias. * {{{ * // Renames colA to colB in select output. * df.select($"colA".as("colB")) * }}} * * If the current column has metadata associated with it, this metadata will be propagated to * the new column. If this not desired, use the API `as(alias: String, metadata: Metadata)` with * explicit metadata. * * @group expr_ops * @since 1.3.0 */ def as(alias: Symbol): Column = name(alias.name) /** * Gives the column an alias with metadata. * {{{ * val metadata: Metadata = ... * df.select($"colA".as("colB", metadata)) * }}} * * @group expr_ops * @since 1.3.0 */ def as(alias: String, metadata: Metadata): Column = Column(internal.Alias(node, alias :: Nil, metadata = Option(metadata))) /** * Gives the column a name (alias). * {{{ * // Renames colA to colB in select output. * df.select($"colA".name("colB")) * }}} * * If the current column has metadata associated with it, this metadata will be propagated to * the new column. If this not desired, use the API `as(alias: String, metadata: Metadata)` with * explicit metadata. * * @group expr_ops * @since 2.0.0 */ def name(alias: String): Column = Column(internal.Alias(node, alias :: Nil)) /** * Casts the column to a different data type. * {{{ * // Casts colA to IntegerType. * import org.apache.spark.sql.types.IntegerType * df.select(df("colA").cast(IntegerType)) * * // equivalent to * df.select(df("colA").cast("int")) * }}} * * @group expr_ops * @since 1.3.0 */ def cast(to: DataType): Column = Column(internal.Cast(node, to)) /** * Casts the column to a different data type, using the canonical string representation of the * type. The supported types are: `string`, `boolean`, `byte`, `short`, `int`, `long`, `float`, * `double`, `decimal`, `date`, `timestamp`. * {{{ * // Casts colA to integer. * df.select(df("colA").cast("int")) * }}} * * @group expr_ops * @since 1.3.0 */ def cast(to: String): Column = cast(DataTypeParser.parseDataType(to)) /** * Casts the column to a different data type and the result is null on failure. * {{{ * // Casts colA to IntegerType. * import org.apache.spark.sql.types.IntegerType * df.select(df("colA").try_cast(IntegerType)) * * // equivalent to * df.select(df("colA").try_cast("int")) * }}} * * @group expr_ops * @since 4.0.0 */ def try_cast(to: DataType): Column = { Column(internal.Cast(node, to, Option(internal.Cast.Try))) } /** * Casts the column to a different data type and the result is null on failure. * {{{ * // Casts colA to integer. * df.select(df("colA").try_cast("int")) * }}} * * @group expr_ops * @since 4.0.0 */ def try_cast(to: String): Column = { try_cast(DataTypeParser.parseDataType(to)) } private def sortOrder( sortDirection: internal.SortOrder.SortDirection, nullOrdering: internal.SortOrder.NullOrdering): Column = { Column(internal.SortOrder(node, sortDirection, nullOrdering)) } private[sql] def sortOrder: internal.SortOrder = node match { case order: internal.SortOrder => order case _ => asc.node.asInstanceOf[internal.SortOrder] } /** * Returns a sort expression based on the descending order of the column. * {{{ * // Scala * df.sort(df("age").desc) * * // Java * df.sort(df.col("age").desc()); * }}} * * @group expr_ops * @since 1.3.0 */ def desc: Column = desc_nulls_last /** * Returns a sort expression based on the descending order of the column, and null values appear * before non-null values. * {{{ * // Scala: sort a DataFrame by age column in descending order and null values appearing first. * df.sort(df("age").desc_nulls_first) * * // Java * df.sort(df.col("age").desc_nulls_first()); * }}} * * @group expr_ops * @since 2.1.0 */ def desc_nulls_first: Column = sortOrder(internal.SortOrder.Descending, internal.SortOrder.NullsFirst) /** * Returns a sort expression based on the descending order of the column, and null values appear * after non-null values. * {{{ * // Scala: sort a DataFrame by age column in descending order and null values appearing last. * df.sort(df("age").desc_nulls_last) * * // Java * df.sort(df.col("age").desc_nulls_last()); * }}} * * @group expr_ops * @since 2.1.0 */ def desc_nulls_last: Column = sortOrder(internal.SortOrder.Descending, internal.SortOrder.NullsLast) /** * Returns a sort expression based on ascending order of the column. * {{{ * // Scala: sort a DataFrame by age column in ascending order. * df.sort(df("age").asc) * * // Java * df.sort(df.col("age").asc()); * }}} * * @group expr_ops * @since 1.3.0 */ def asc: Column = asc_nulls_first /** * Returns a sort expression based on ascending order of the column, and null values return * before non-null values. * {{{ * // Scala: sort a DataFrame by age column in ascending order and null values appearing first. * df.sort(df("age").asc_nulls_first) * * // Java * df.sort(df.col("age").asc_nulls_first()); * }}} * * @group expr_ops * @since 2.1.0 */ def asc_nulls_first: Column = sortOrder(internal.SortOrder.Ascending, internal.SortOrder.NullsFirst) /** * Returns a sort expression based on ascending order of the column, and null values appear * after non-null values. * {{{ * // Scala: sort a DataFrame by age column in ascending order and null values appearing last. * df.sort(df("age").asc_nulls_last) * * // Java * df.sort(df.col("age").asc_nulls_last()); * }}} * * @group expr_ops * @since 2.1.0 */ def asc_nulls_last: Column = sortOrder(internal.SortOrder.Ascending, internal.SortOrder.NullsLast) /** * Prints the expression to the console for debugging purposes. * * @group df_ops * @since 1.3.0 */ def explain(extended: Boolean): Unit = { // scalastyle:off println if (extended) { println(node) } else { println(node.sql) } // scalastyle:on println } /** * Compute bitwise OR of this expression with another expression. * {{{ * df.select($"colA".bitwiseOR($"colB")) * }}} * * @group expr_ops * @since 1.4.0 */ def bitwiseOR(other: Any): Column = fn("|", other) /** * Compute bitwise AND of this expression with another expression. * {{{ * df.select($"colA".bitwiseAND($"colB")) * }}} * * @group expr_ops * @since 1.4.0 */ def bitwiseAND(other: Any): Column = fn("&", other) /** * Compute bitwise XOR of this expression with another expression. * {{{ * df.select($"colA".bitwiseXOR($"colB")) * }}} * * @group expr_ops * @since 1.4.0 */ def bitwiseXOR(other: Any): Column = fn("^", other) /** * Defines a windowing column. * * {{{ * val w = Window.partitionBy("name").orderBy("id") * df.select( * sum("price").over(w.rangeBetween(Window.unboundedPreceding, 2)), * avg("price").over(w.rowsBetween(Window.currentRow, 4)) * ) * }}} * * @group expr_ops * @since 1.4.0 */ def over(window: expressions.WindowSpec): Column = withOrigin { window.withAggregate(this) } /** * Defines an empty analytic clause. In this case the analytic function is applied and presented * for all rows in the result set. * * {{{ * df.select( * sum("price").over(), * avg("price").over() * ) * }}} * * @group expr_ops * @since 2.0.0 */ def over(): Column = over(Window.spec) } /** * A convenient class used for constructing schema. * * @since 1.3.0 */ @Stable class ColumnName(name: String) extends Column(name) { /** * Creates a new `StructField` of type boolean. * @since 1.3.0 */ def boolean: StructField = StructField(name, BooleanType) /** * Creates a new `StructField` of type byte. * @since 1.3.0 */ def byte: StructField = StructField(name, ByteType) /** * Creates a new `StructField` of type short. * @since 1.3.0 */ def short: StructField = StructField(name, ShortType) /** * Creates a new `StructField` of type int. * @since 1.3.0 */ def int: StructField = StructField(name, IntegerType) /** * Creates a new `StructField` of type long. * @since 1.3.0 */ def long: StructField = StructField(name, LongType) /** * Creates a new `StructField` of type float. * @since 1.3.0 */ def float: StructField = StructField(name, FloatType) /** * Creates a new `StructField` of type double. * @since 1.3.0 */ def double: StructField = StructField(name, DoubleType) /** * Creates a new `StructField` of type string. * @since 1.3.0 */ def string: StructField = StructField(name, StringType) /** * Creates a new `StructField` of type date. * @since 1.3.0 */ def date: StructField = StructField(name, DateType) /** * Creates a new `StructField` of type decimal. * @since 1.3.0 */ def decimal: StructField = StructField(name, DecimalType.USER_DEFAULT) /** * Creates a new `StructField` of type decimal. * @since 1.3.0 */ def decimal(precision: Int, scale: Int): StructField = StructField(name, DecimalType(precision, scale)) /** * Creates a new `StructField` of type timestamp. * @since 1.3.0 */ def timestamp: StructField = StructField(name, TimestampType) /** * Creates a new `StructField` of type binary. * @since 1.3.0 */ def binary: StructField = StructField(name, BinaryType) /** * Creates a new `StructField` of type array. * @since 1.3.0 */ def array(dataType: DataType): StructField = StructField(name, ArrayType(dataType)) /** * Creates a new `StructField` of type map. * @since 1.3.0 */ def map(keyType: DataType, valueType: DataType): StructField = map(MapType(keyType, valueType)) def map(mapType: MapType): StructField = StructField(name, mapType) /** * Creates a new `StructField` of type struct. * @since 1.3.0 */ def struct(fields: StructField*): StructField = struct(StructType(fields)) /** * Creates a new `StructField` of type struct. * @since 1.3.0 */ def struct(structType: StructType): StructField = StructField(name, structType) }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy