org.apache.spark.sql.functions.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import java.util.Collections
import scala.jdk.CollectionConverters._
import scala.reflect.runtime.universe.TypeTag
import scala.util.Try
import org.apache.spark.annotation.Stable
import org.apache.spark.sql.api.java._
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.catalyst.encoders.AgnosticEncoders.PrimitiveLongEncoder
import org.apache.spark.sql.errors.CompilationErrors
import org.apache.spark.sql.expressions.{Aggregator, SparkUserDefinedFunction, UserDefinedAggregator, UserDefinedFunction}
import org.apache.spark.sql.internal.{SqlApiConf, ToScalaUDF}
import org.apache.spark.sql.types._
import org.apache.spark.util.SparkClassUtils
/**
* Commonly used functions available for DataFrame operations. Using functions defined here
* provides a little bit more compile-time safety to make sure the function exists.
*
* You can call the functions defined here by two ways: `_FUNC_(...)` and
* `functions.expr("_FUNC_(...)")`.
*
* As an example, `regr_count` is a function that is defined here. You can use
* `regr_count(col("yCol", col("xCol")))` to invoke the `regr_count` function. This way the
* programming language's compiler ensures `regr_count` exists and is of the proper form. You can
* also use `expr("regr_count(yCol, xCol)")` function to invoke the same function. In this case,
* Spark itself will ensure `regr_count` exists when it analyzes the query.
*
* You can find the entire list of functions at SQL API documentation of your Spark version, see
* also the latest list
*
* This function APIs usually have methods with `Column` signature only because it can support not
* only `Column` but also other types such as a native string. The other variants currently exist
* for historical reasons.
*
* @groupname udf_funcs UDF, UDAF and UDT
* @groupname agg_funcs Aggregate functions
* @groupname datetime_funcs Date and Timestamp functions
* @groupname sort_funcs Sort functions
* @groupname normal_funcs Normal functions
* @groupname math_funcs Mathematical functions
* @groupname bitwise_funcs Bitwise functions
* @groupname predicate_funcs Predicate functions
* @groupname conditional_funcs Conditional functions
* @groupname hash_funcs Hash functions
* @groupname misc_funcs Misc functions
* @groupname window_funcs Window functions
* @groupname generator_funcs Generator functions
* @groupname string_funcs String functions
* @groupname collection_funcs Collection functions
* @groupname array_funcs Array functions
* @groupname map_funcs Map functions
* @groupname struct_funcs Struct functions
* @groupname csv_funcs CSV functions
* @groupname json_funcs JSON functions
* @groupname variant_funcs VARIANT functions
* @groupname xml_funcs XML functions
* @groupname url_funcs URL functions
* @groupname partition_transforms Partition transform functions
* @groupname Ungrouped Support functions for DataFrames
* @since 1.3.0
*/
@Stable
// scalastyle:off
object functions {
// scalastyle:on
/**
* Returns a [[Column]] based on the given column name.
*
* @group normal_funcs
* @since 1.3.0
*/
def col(colName: String): Column = Column(colName)
/**
* Returns a [[Column]] based on the given column name. Alias of [[col]].
*
* @group normal_funcs
* @since 1.3.0
*/
def column(colName: String): Column = Column(colName)
/**
* Creates a [[Column]] of literal value.
*
* The passed in object is returned directly if it is already a [[Column]]. If the object is a
* Scala Symbol, it is converted into a [[Column]] also. Otherwise, a new [[Column]] is created
* to represent the literal value.
*
* @group normal_funcs
* @since 1.3.0
*/
def lit(literal: Any): Column = {
literal match {
case c: Column => c
case s: Symbol => new ColumnName(s.name)
case _ =>
// This is different from `typedlit`. `typedlit` calls `Literal.create` to use
// `ScalaReflection` to get the type of `literal`. However, since we use `Any` in this
// method, `typedLit[Any](literal)` will always fail and fallback to `Literal.apply`. Hence,
// we can just manually call `Literal.apply` to skip the expensive `ScalaReflection` code.
// This is significantly better when there are many threads calling `lit` concurrently.
Column(internal.Literal(literal))
}
}
/**
* Creates a [[Column]] of literal value.
*
* An alias of `typedlit`, and it is encouraged to use `typedlit` directly.
*
* @group normal_funcs
* @since 2.2.0
*/
def typedLit[T: TypeTag](literal: T): Column = {
typedlit(literal)
}
/**
* Creates a [[Column]] of literal value.
*
* The passed in object is returned directly if it is already a [[Column]]. If the object is a
* Scala Symbol, it is converted into a [[Column]] also. Otherwise, a new [[Column]] is created
* to represent the literal value. The difference between this function and [[lit]] is that this
* function can handle parameterized scala types e.g.: List, Seq and Map.
*
* @note
* `typedlit` will call expensive Scala reflection APIs. `lit` is preferred if parameterized
* Scala types are not used.
*
* @group normal_funcs
* @since 3.2.0
*/
def typedlit[T: TypeTag](literal: T): Column = {
literal match {
case c: Column => c
case s: Symbol => new ColumnName(s.name)
case _ =>
val dataType = Try(ScalaReflection.schemaFor[T].dataType).toOption
Column(internal.Literal(literal, dataType))
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Sort functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns a sort expression based on ascending order of the column.
* {{{
* df.sort(asc("dept"), desc("age"))
* }}}
*
* @group sort_funcs
* @since 1.3.0
*/
def asc(columnName: String): Column = Column(columnName).asc
/**
* Returns a sort expression based on ascending order of the column, and null values return
* before non-null values.
* {{{
* df.sort(asc_nulls_first("dept"), desc("age"))
* }}}
*
* @group sort_funcs
* @since 2.1.0
*/
def asc_nulls_first(columnName: String): Column = Column(columnName).asc_nulls_first
/**
* Returns a sort expression based on ascending order of the column, and null values appear
* after non-null values.
* {{{
* df.sort(asc_nulls_last("dept"), desc("age"))
* }}}
*
* @group sort_funcs
* @since 2.1.0
*/
def asc_nulls_last(columnName: String): Column = Column(columnName).asc_nulls_last
/**
* Returns a sort expression based on the descending order of the column.
* {{{
* df.sort(asc("dept"), desc("age"))
* }}}
*
* @group sort_funcs
* @since 1.3.0
*/
def desc(columnName: String): Column = Column(columnName).desc
/**
* Returns a sort expression based on the descending order of the column, and null values appear
* before non-null values.
* {{{
* df.sort(asc("dept"), desc_nulls_first("age"))
* }}}
*
* @group sort_funcs
* @since 2.1.0
*/
def desc_nulls_first(columnName: String): Column = Column(columnName).desc_nulls_first
/**
* Returns a sort expression based on the descending order of the column, and null values appear
* after non-null values.
* {{{
* df.sort(asc("dept"), desc_nulls_last("age"))
* }}}
*
* @group sort_funcs
* @since 2.1.0
*/
def desc_nulls_last(columnName: String): Column = Column(columnName).desc_nulls_last
//////////////////////////////////////////////////////////////////////////////////////////////
// Aggregate functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use approx_count_distinct", "2.1.0")
def approxCountDistinct(e: Column): Column = approx_count_distinct(e)
/**
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use approx_count_distinct", "2.1.0")
def approxCountDistinct(columnName: String): Column = approx_count_distinct(columnName)
/**
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use approx_count_distinct", "2.1.0")
def approxCountDistinct(e: Column, rsd: Double): Column = approx_count_distinct(e, rsd)
/**
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use approx_count_distinct", "2.1.0")
def approxCountDistinct(columnName: String, rsd: Double): Column = {
approx_count_distinct(Column(columnName), rsd)
}
/**
* Aggregate function: returns the approximate number of distinct items in a group.
*
* @group agg_funcs
* @since 2.1.0
*/
def approx_count_distinct(e: Column): Column = Column.fn("approx_count_distinct", e)
/**
* Aggregate function: returns the approximate number of distinct items in a group.
*
* @group agg_funcs
* @since 2.1.0
*/
def approx_count_distinct(columnName: String): Column = approx_count_distinct(
column(columnName))
/**
* Aggregate function: returns the approximate number of distinct items in a group.
*
* @param rsd
* maximum relative standard deviation allowed (default = 0.05)
*
* @group agg_funcs
* @since 2.1.0
*/
def approx_count_distinct(e: Column, rsd: Double): Column = {
Column.fn("approx_count_distinct", e, lit(rsd))
}
/**
* Aggregate function: returns the approximate number of distinct items in a group.
*
* @param rsd
* maximum relative standard deviation allowed (default = 0.05)
*
* @group agg_funcs
* @since 2.1.0
*/
def approx_count_distinct(columnName: String, rsd: Double): Column = {
approx_count_distinct(Column(columnName), rsd)
}
/**
* Aggregate function: returns the average of the values in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def avg(e: Column): Column = Column.fn("avg", e)
/**
* Aggregate function: returns the average of the values in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def avg(columnName: String): Column = avg(Column(columnName))
/**
* Aggregate function: returns a list of objects with duplicates.
*
* @note
* The function is non-deterministic because the order of collected results depends on the
* order of the rows which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_list(e: Column): Column = Column.fn("collect_list", e)
/**
* Aggregate function: returns a list of objects with duplicates.
*
* @note
* The function is non-deterministic because the order of collected results depends on the
* order of the rows which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_list(columnName: String): Column = collect_list(Column(columnName))
/**
* Aggregate function: returns a set of objects with duplicate elements eliminated.
*
* @note
* The function is non-deterministic because the order of collected results depends on the
* order of the rows which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_set(e: Column): Column = Column.fn("collect_set", e)
/**
* Aggregate function: returns a set of objects with duplicate elements eliminated.
*
* @note
* The function is non-deterministic because the order of collected results depends on the
* order of the rows which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_set(columnName: String): Column = collect_set(Column(columnName))
/**
* Returns a count-min sketch of a column with the given esp, confidence and seed. The result is
* an array of bytes, which can be deserialized to a `CountMinSketch` before usage. Count-min
* sketch is a probabilistic data structure used for cardinality estimation using sub-linear
* space.
*
* @group agg_funcs
* @since 3.5.0
*/
def count_min_sketch(e: Column, eps: Column, confidence: Column, seed: Column): Column =
Column.fn("count_min_sketch", e, eps, confidence, seed)
private[spark] def collect_top_k(e: Column, num: Int, reverse: Boolean): Column =
Column.internalFn("collect_top_k", e, lit(num), lit(reverse))
/**
* Aggregate function: returns the Pearson Correlation Coefficient for two columns.
*
* @group agg_funcs
* @since 1.6.0
*/
def corr(column1: Column, column2: Column): Column = Column.fn("corr", column1, column2)
/**
* Aggregate function: returns the Pearson Correlation Coefficient for two columns.
*
* @group agg_funcs
* @since 1.6.0
*/
def corr(columnName1: String, columnName2: String): Column = {
corr(Column(columnName1), Column(columnName2))
}
/**
* Aggregate function: returns the number of items in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def count(e: Column): Column =
Column.fn("count", e)
/**
* Aggregate function: returns the number of items in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def count(columnName: String): TypedColumn[Any, Long] =
count(Column(columnName)).as(PrimitiveLongEncoder)
/**
* Aggregate function: returns the number of distinct items in a group.
*
* An alias of `count_distinct`, and it is encouraged to use `count_distinct` directly.
*
* @group agg_funcs
* @since 1.3.0
*/
@scala.annotation.varargs
def countDistinct(expr: Column, exprs: Column*): Column = count_distinct(expr, exprs: _*)
/**
* Aggregate function: returns the number of distinct items in a group.
*
* An alias of `count_distinct`, and it is encouraged to use `count_distinct` directly.
*
* @group agg_funcs
* @since 1.3.0
*/
@scala.annotation.varargs
def countDistinct(columnName: String, columnNames: String*): Column =
count_distinct(Column(columnName), columnNames.map(Column.apply): _*)
/**
* Aggregate function: returns the number of distinct items in a group.
*
* @group agg_funcs
* @since 3.2.0
*/
@scala.annotation.varargs
def count_distinct(expr: Column, exprs: Column*): Column =
Column.fn("count", isDistinct = true, expr +: exprs: _*)
/**
* Aggregate function: returns the population covariance for two columns.
*
* @group agg_funcs
* @since 2.0.0
*/
def covar_pop(column1: Column, column2: Column): Column =
Column.fn("covar_pop", column1, column2)
/**
* Aggregate function: returns the population covariance for two columns.
*
* @group agg_funcs
* @since 2.0.0
*/
def covar_pop(columnName1: String, columnName2: String): Column = {
covar_pop(Column(columnName1), Column(columnName2))
}
/**
* Aggregate function: returns the sample covariance for two columns.
*
* @group agg_funcs
* @since 2.0.0
*/
def covar_samp(column1: Column, column2: Column): Column =
Column.fn("covar_samp", column1, column2)
/**
* Aggregate function: returns the sample covariance for two columns.
*
* @group agg_funcs
* @since 2.0.0
*/
def covar_samp(columnName1: String, columnName2: String): Column = {
covar_samp(Column(columnName1), Column(columnName2))
}
/**
* Aggregate function: returns the first value in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 2.0.0
*/
def first(e: Column, ignoreNulls: Boolean): Column =
Column.fn("first", false, e, lit(ignoreNulls))
/**
* Aggregate function: returns the first value of a column in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 2.0.0
*/
def first(columnName: String, ignoreNulls: Boolean): Column = {
first(Column(columnName), ignoreNulls)
}
/**
* Aggregate function: returns the first value in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.3.0
*/
def first(e: Column): Column = first(e, ignoreNulls = false)
/**
* Aggregate function: returns the first value of a column in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.3.0
*/
def first(columnName: String): Column = first(Column(columnName))
/**
* Aggregate function: returns the first value in a group.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 3.5.0
*/
def first_value(e: Column): Column = Column.fn("first_value", e)
/**
* Aggregate function: returns the first value in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 3.5.0
*/
def first_value(e: Column, ignoreNulls: Column): Column =
Column.fn("first_value", e, ignoreNulls)
/**
* Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated or
* not, returns 1 for aggregated or 0 for not aggregated in the result set.
*
* @group agg_funcs
* @since 2.0.0
*/
def grouping(e: Column): Column = Column.fn("grouping", e)
/**
* Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated or
* not, returns 1 for aggregated or 0 for not aggregated in the result set.
*
* @group agg_funcs
* @since 2.0.0
*/
def grouping(columnName: String): Column = grouping(Column(columnName))
/**
* Aggregate function: returns the level of grouping, equals to
*
* {{{
* (grouping(c1) <<; (n-1)) + (grouping(c2) <<; (n-2)) + ... + grouping(cn)
* }}}
*
* @note
* The list of columns should match with grouping columns exactly, or empty (means all the
* grouping columns).
*
* @group agg_funcs
* @since 2.0.0
*/
def grouping_id(cols: Column*): Column = Column.fn("grouping_id", cols: _*)
/**
* Aggregate function: returns the level of grouping, equals to
*
* {{{
* (grouping(c1) <<; (n-1)) + (grouping(c2) <<; (n-2)) + ... + grouping(cn)
* }}}
*
* @note
* The list of columns should match with grouping columns exactly.
*
* @group agg_funcs
* @since 2.0.0
*/
def grouping_id(colName: String, colNames: String*): Column = {
grouping_id((Seq(colName) ++ colNames).map(n => Column(n)): _*)
}
/**
* Aggregate function: returns the updatable binary representation of the Datasketches HllSketch
* configured with lgConfigK arg.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_sketch_agg(e: Column, lgConfigK: Column): Column =
Column.fn("hll_sketch_agg", e, lgConfigK)
/**
* Aggregate function: returns the updatable binary representation of the Datasketches HllSketch
* configured with lgConfigK arg.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_sketch_agg(e: Column, lgConfigK: Int): Column =
Column.fn("hll_sketch_agg", e, lit(lgConfigK))
/**
* Aggregate function: returns the updatable binary representation of the Datasketches HllSketch
* configured with lgConfigK arg.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_sketch_agg(columnName: String, lgConfigK: Int): Column = {
hll_sketch_agg(Column(columnName), lgConfigK)
}
/**
* Aggregate function: returns the updatable binary representation of the Datasketches HllSketch
* configured with default lgConfigK value.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_sketch_agg(e: Column): Column =
Column.fn("hll_sketch_agg", e)
/**
* Aggregate function: returns the updatable binary representation of the Datasketches HllSketch
* configured with default lgConfigK value.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_sketch_agg(columnName: String): Column = {
hll_sketch_agg(Column(columnName))
}
/**
* Aggregate function: returns the updatable binary representation of the Datasketches
* HllSketch, generated by merging previously created Datasketches HllSketch instances via a
* Datasketches Union instance. Throws an exception if sketches have different lgConfigK values
* and allowDifferentLgConfigK is set to false.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_union_agg(e: Column, allowDifferentLgConfigK: Column): Column =
Column.fn("hll_union_agg", e, allowDifferentLgConfigK)
/**
* Aggregate function: returns the updatable binary representation of the Datasketches
* HllSketch, generated by merging previously created Datasketches HllSketch instances via a
* Datasketches Union instance. Throws an exception if sketches have different lgConfigK values
* and allowDifferentLgConfigK is set to false.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_union_agg(e: Column, allowDifferentLgConfigK: Boolean): Column =
Column.fn("hll_union_agg", e, lit(allowDifferentLgConfigK))
/**
* Aggregate function: returns the updatable binary representation of the Datasketches
* HllSketch, generated by merging previously created Datasketches HllSketch instances via a
* Datasketches Union instance. Throws an exception if sketches have different lgConfigK values
* and allowDifferentLgConfigK is set to false.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_union_agg(columnName: String, allowDifferentLgConfigK: Boolean): Column = {
hll_union_agg(Column(columnName), allowDifferentLgConfigK)
}
/**
* Aggregate function: returns the updatable binary representation of the Datasketches
* HllSketch, generated by merging previously created Datasketches HllSketch instances via a
* Datasketches Union instance. Throws an exception if sketches have different lgConfigK values.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_union_agg(e: Column): Column =
Column.fn("hll_union_agg", e)
/**
* Aggregate function: returns the updatable binary representation of the Datasketches
* HllSketch, generated by merging previously created Datasketches HllSketch instances via a
* Datasketches Union instance. Throws an exception if sketches have different lgConfigK values.
*
* @group agg_funcs
* @since 3.5.0
*/
def hll_union_agg(columnName: String): Column = {
hll_union_agg(Column(columnName))
}
/**
* Aggregate function: returns the kurtosis of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def kurtosis(e: Column): Column = Column.fn("kurtosis", e)
/**
* Aggregate function: returns the kurtosis of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def kurtosis(columnName: String): Column = kurtosis(Column(columnName))
/**
* Aggregate function: returns the last value in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 2.0.0
*/
def last(e: Column, ignoreNulls: Boolean): Column =
Column.fn("last", false, e, lit(ignoreNulls))
/**
* Aggregate function: returns the last value of the column in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 2.0.0
*/
def last(columnName: String, ignoreNulls: Boolean): Column = {
last(Column(columnName), ignoreNulls)
}
/**
* Aggregate function: returns the last value in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.3.0
*/
def last(e: Column): Column = last(e, ignoreNulls = false)
/**
* Aggregate function: returns the last value of the column in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.3.0
*/
def last(columnName: String): Column = last(Column(columnName), ignoreNulls = false)
/**
* Aggregate function: returns the last value in a group.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 3.5.0
*/
def last_value(e: Column): Column = Column.fn("last_value", e)
/**
* Aggregate function: returns the last value in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note
* The function is non-deterministic because its results depends on the order of the rows
* which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 3.5.0
*/
def last_value(e: Column, ignoreNulls: Column): Column =
Column.fn("last_value", e, ignoreNulls)
/**
* Aggregate function: returns the most frequent value in a group.
*
* @group agg_funcs
* @since 3.4.0
*/
def mode(e: Column): Column = Column.fn("mode", e)
/**
* Aggregate function: returns the most frequent value in a group.
*
* When multiple values have the same greatest frequency then either any of values is returned
* if deterministic is false or is not defined, or the lowest value is returned if deterministic
* is true.
*
* @group agg_funcs
* @since 4.0.0
*/
def mode(e: Column, deterministic: Boolean): Column = Column.fn("mode", e, lit(deterministic))
/**
* Aggregate function: returns the maximum value of the expression in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def max(e: Column): Column = Column.fn("max", e)
/**
* Aggregate function: returns the maximum value of the column in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def max(columnName: String): Column = max(Column(columnName))
/**
* Aggregate function: returns the value associated with the maximum value of ord.
*
* @note
* The function is non-deterministic so the output order can be different for those associated
* the same values of `e`.
*
* @group agg_funcs
* @since 3.3.0
*/
def max_by(e: Column, ord: Column): Column = Column.fn("max_by", e, ord)
/**
* Aggregate function: returns the average of the values in a group. Alias for avg.
*
* @group agg_funcs
* @since 1.4.0
*/
def mean(e: Column): Column = avg(e)
/**
* Aggregate function: returns the average of the values in a group. Alias for avg.
*
* @group agg_funcs
* @since 1.4.0
*/
def mean(columnName: String): Column = avg(columnName)
/**
* Aggregate function: returns the median of the values in a group.
*
* @group agg_funcs
* @since 3.4.0
*/
def median(e: Column): Column = Column.fn("median", e)
/**
* Aggregate function: returns the minimum value of the expression in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def min(e: Column): Column = Column.fn("min", e)
/**
* Aggregate function: returns the minimum value of the column in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def min(columnName: String): Column = min(Column(columnName))
/**
* Aggregate function: returns the value associated with the minimum value of ord.
*
* @note
* The function is non-deterministic so the output order can be different for those associated
* the same values of `e`.
*
* @group agg_funcs
* @since 3.3.0
*/
def min_by(e: Column, ord: Column): Column = Column.fn("min_by", e, ord)
/**
* Aggregate function: returns the exact percentile(s) of numeric column `expr` at the given
* percentage(s) with value range in [0.0, 1.0].
*
* @group agg_funcs
* @since 3.5.0
*/
def percentile(e: Column, percentage: Column): Column = Column.fn("percentile", e, percentage)
/**
* Aggregate function: returns the exact percentile(s) of numeric column `expr` at the given
* percentage(s) with value range in [0.0, 1.0].
*
* @group agg_funcs
* @since 3.5.0
*/
def percentile(e: Column, percentage: Column, frequency: Column): Column =
Column.fn("percentile", e, percentage, frequency)
/**
* Aggregate function: returns the approximate `percentile` of the numeric column `col` which is
* the smallest value in the ordered `col` values (sorted from least to greatest) such that no
* more than `percentage` of `col` values is less than the value or equal to that value.
*
* If percentage is an array, each value must be between 0.0 and 1.0. If it is a single floating
* point value, it must be between 0.0 and 1.0.
*
* The accuracy parameter is a positive numeric literal which controls approximation accuracy at
* the cost of memory. Higher value of accuracy yields better accuracy, 1.0/accuracy is the
* relative error of the approximation.
*
* @group agg_funcs
* @since 3.1.0
*/
def percentile_approx(e: Column, percentage: Column, accuracy: Column): Column =
Column.fn("percentile_approx", e, percentage, accuracy)
/**
* Aggregate function: returns the approximate `percentile` of the numeric column `col` which is
* the smallest value in the ordered `col` values (sorted from least to greatest) such that no
* more than `percentage` of `col` values is less than the value or equal to that value.
*
* If percentage is an array, each value must be between 0.0 and 1.0. If it is a single floating
* point value, it must be between 0.0 and 1.0.
*
* The accuracy parameter is a positive numeric literal which controls approximation accuracy at
* the cost of memory. Higher value of accuracy yields better accuracy, 1.0/accuracy is the
* relative error of the approximation.
*
* @group agg_funcs
* @since 3.5.0
*/
def approx_percentile(e: Column, percentage: Column, accuracy: Column): Column = {
Column.fn("approx_percentile", e, percentage, accuracy)
}
/**
* Aggregate function: returns the product of all numerical elements in a group.
*
* @group agg_funcs
* @since 3.2.0
*/
def product(e: Column): Column = Column.internalFn("product", e)
/**
* Aggregate function: returns the skewness of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def skewness(e: Column): Column = Column.fn("skewness", e)
/**
* Aggregate function: returns the skewness of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def skewness(columnName: String): Column = skewness(Column(columnName))
/**
* Aggregate function: alias for `stddev_samp`.
*
* @group agg_funcs
* @since 3.5.0
*/
def std(e: Column): Column = Column.fn("std", e)
/**
* Aggregate function: alias for `stddev_samp`.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev(e: Column): Column = Column.fn("stddev", e)
/**
* Aggregate function: alias for `stddev_samp`.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev(columnName: String): Column = stddev(Column(columnName))
/**
* Aggregate function: returns the sample standard deviation of the expression in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev_samp(e: Column): Column = Column.fn("stddev_samp", e)
/**
* Aggregate function: returns the sample standard deviation of the expression in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev_samp(columnName: String): Column = stddev_samp(Column(columnName))
/**
* Aggregate function: returns the population standard deviation of the expression in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev_pop(e: Column): Column = Column.fn("stddev_pop", e)
/**
* Aggregate function: returns the population standard deviation of the expression in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev_pop(columnName: String): Column = stddev_pop(Column(columnName))
/**
* Aggregate function: returns the sum of all values in the expression.
*
* @group agg_funcs
* @since 1.3.0
*/
def sum(e: Column): Column = Column.fn("sum", e)
/**
* Aggregate function: returns the sum of all values in the given column.
*
* @group agg_funcs
* @since 1.3.0
*/
def sum(columnName: String): Column = sum(Column(columnName))
/**
* Aggregate function: returns the sum of distinct values in the expression.
*
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use sum_distinct", "3.2.0")
def sumDistinct(e: Column): Column = sum_distinct(e)
/**
* Aggregate function: returns the sum of distinct values in the expression.
*
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use sum_distinct", "3.2.0")
def sumDistinct(columnName: String): Column = sum_distinct(Column(columnName))
/**
* Aggregate function: returns the sum of distinct values in the expression.
*
* @group agg_funcs
* @since 3.2.0
*/
def sum_distinct(e: Column): Column = Column.fn("sum", isDistinct = true, e)
/**
* Aggregate function: alias for `var_samp`.
*
* @group agg_funcs
* @since 1.6.0
*/
def variance(e: Column): Column = Column.fn("variance", e)
/**
* Aggregate function: alias for `var_samp`.
*
* @group agg_funcs
* @since 1.6.0
*/
def variance(columnName: String): Column = variance(Column(columnName))
/**
* Aggregate function: returns the unbiased variance of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def var_samp(e: Column): Column = Column.fn("var_samp", e)
/**
* Aggregate function: returns the unbiased variance of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def var_samp(columnName: String): Column = var_samp(Column(columnName))
/**
* Aggregate function: returns the population variance of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def var_pop(e: Column): Column = Column.fn("var_pop", e)
/**
* Aggregate function: returns the population variance of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def var_pop(columnName: String): Column = var_pop(Column(columnName))
/**
* Aggregate function: returns the average of the independent variable for non-null pairs in a
* group, where `y` is the dependent variable and `x` is the independent variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_avgx(y: Column, x: Column): Column = Column.fn("regr_avgx", y, x)
/**
* Aggregate function: returns the average of the independent variable for non-null pairs in a
* group, where `y` is the dependent variable and `x` is the independent variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_avgy(y: Column, x: Column): Column = Column.fn("regr_avgy", y, x)
/**
* Aggregate function: returns the number of non-null number pairs in a group, where `y` is the
* dependent variable and `x` is the independent variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_count(y: Column, x: Column): Column = Column.fn("regr_count", y, x)
/**
* Aggregate function: returns the intercept of the univariate linear regression line for
* non-null pairs in a group, where `y` is the dependent variable and `x` is the independent
* variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_intercept(y: Column, x: Column): Column = Column.fn("regr_intercept", y, x)
/**
* Aggregate function: returns the coefficient of determination for non-null pairs in a group,
* where `y` is the dependent variable and `x` is the independent variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_r2(y: Column, x: Column): Column = Column.fn("regr_r2", y, x)
/**
* Aggregate function: returns the slope of the linear regression line for non-null pairs in a
* group, where `y` is the dependent variable and `x` is the independent variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_slope(y: Column, x: Column): Column = Column.fn("regr_slope", y, x)
/**
* Aggregate function: returns REGR_COUNT(y, x) * VAR_POP(x) for non-null pairs in a group,
* where `y` is the dependent variable and `x` is the independent variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_sxx(y: Column, x: Column): Column = Column.fn("regr_sxx", y, x)
/**
* Aggregate function: returns REGR_COUNT(y, x) * COVAR_POP(y, x) for non-null pairs in a group,
* where `y` is the dependent variable and `x` is the independent variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_sxy(y: Column, x: Column): Column = Column.fn("regr_sxy", y, x)
/**
* Aggregate function: returns REGR_COUNT(y, x) * VAR_POP(y) for non-null pairs in a group,
* where `y` is the dependent variable and `x` is the independent variable.
*
* @group agg_funcs
* @since 3.5.0
*/
def regr_syy(y: Column, x: Column): Column = Column.fn("regr_syy", y, x)
/**
* Aggregate function: returns some value of `e` for a group of rows.
*
* @group agg_funcs
* @since 3.5.0
*/
def any_value(e: Column): Column = Column.fn("any_value", e)
/**
* Aggregate function: returns some value of `e` for a group of rows. If `isIgnoreNull` is true,
* returns only non-null values.
*
* @group agg_funcs
* @since 3.5.0
*/
def any_value(e: Column, ignoreNulls: Column): Column =
Column.fn("any_value", e, ignoreNulls)
/**
* Aggregate function: returns the number of `TRUE` values for the expression.
*
* @group agg_funcs
* @since 3.5.0
*/
def count_if(e: Column): Column = Column.fn("count_if", e)
/**
* Aggregate function: computes a histogram on numeric 'expr' using nb bins. The return value is
* an array of (x,y) pairs representing the centers of the histogram's bins. As the value of
* 'nb' is increased, the histogram approximation gets finer-grained, but may yield artifacts
* around outliers. In practice, 20-40 histogram bins appear to work well, with more bins being
* required for skewed or smaller datasets. Note that this function creates a histogram with
* non-uniform bin widths. It offers no guarantees in terms of the mean-squared-error of the
* histogram, but in practice is comparable to the histograms produced by the R/S-Plus
* statistical computing packages. Note: the output type of the 'x' field in the return value is
* propagated from the input value consumed in the aggregate function.
*
* @group agg_funcs
* @since 3.5.0
*/
def histogram_numeric(e: Column, nBins: Column): Column =
Column.fn("histogram_numeric", e, nBins)
/**
* Aggregate function: returns true if all values of `e` are true.
*
* @group agg_funcs
* @since 3.5.0
*/
def every(e: Column): Column = Column.fn("every", e)
/**
* Aggregate function: returns true if all values of `e` are true.
*
* @group agg_funcs
* @since 3.5.0
*/
def bool_and(e: Column): Column = Column.fn("bool_and", e)
/**
* Aggregate function: returns true if at least one value of `e` is true.
*
* @group agg_funcs
* @since 3.5.0
*/
def some(e: Column): Column = Column.fn("some", e)
/**
* Aggregate function: returns true if at least one value of `e` is true.
*
* @group agg_funcs
* @since 3.5.0
*/
def any(e: Column): Column = Column.fn("any", e)
/**
* Aggregate function: returns true if at least one value of `e` is true.
*
* @group agg_funcs
* @since 3.5.0
*/
def bool_or(e: Column): Column = Column.fn("bool_or", e)
/**
* Aggregate function: returns the bitwise AND of all non-null input values, or null if none.
*
* @group agg_funcs
* @since 3.5.0
*/
def bit_and(e: Column): Column = Column.fn("bit_and", e)
/**
* Aggregate function: returns the bitwise OR of all non-null input values, or null if none.
*
* @group agg_funcs
* @since 3.5.0
*/
def bit_or(e: Column): Column = Column.fn("bit_or", e)
/**
* Aggregate function: returns the bitwise XOR of all non-null input values, or null if none.
*
* @group agg_funcs
* @since 3.5.0
*/
def bit_xor(e: Column): Column = Column.fn("bit_xor", e)
//////////////////////////////////////////////////////////////////////////////////////////////
// Window functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Window function: returns the cumulative distribution of values within a window partition,
* i.e. the fraction of rows that are below the current row.
*
* {{{
* N = total number of rows in the partition
* cumeDist(x) = number of values before (and including) x / N
* }}}
*
* @group window_funcs
* @since 1.6.0
*/
def cume_dist(): Column = Column.fn("cume_dist")
/**
* Window function: returns the rank of rows within a window partition, without any gaps.
*
* The difference between rank and dense_rank is that denseRank leaves no gaps in ranking
* sequence when there are ties. That is, if you were ranking a competition using dense_rank and
* had three people tie for second place, you would say that all three were in second place and
* that the next person came in third. Rank would give me sequential numbers, making the person
* that came in third place (after the ties) would register as coming in fifth.
*
* This is equivalent to the DENSE_RANK function in SQL.
*
* @group window_funcs
* @since 1.6.0
*/
def dense_rank(): Column = Column.fn("dense_rank")
/**
* Window function: returns the value that is `offset` rows before the current row, and `null`
* if there is less than `offset` rows before the current row. For example, an `offset` of one
* will return the previous row at any given point in the window partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lag(e: Column, offset: Int): Column = lag(e, offset, null)
/**
* Window function: returns the value that is `offset` rows before the current row, and `null`
* if there is less than `offset` rows before the current row. For example, an `offset` of one
* will return the previous row at any given point in the window partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lag(columnName: String, offset: Int): Column = lag(columnName, offset, null)
/**
* Window function: returns the value that is `offset` rows before the current row, and
* `defaultValue` if there is less than `offset` rows before the current row. For example, an
* `offset` of one will return the previous row at any given point in the window partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lag(columnName: String, offset: Int, defaultValue: Any): Column = {
lag(Column(columnName), offset, defaultValue)
}
/**
* Window function: returns the value that is `offset` rows before the current row, and
* `defaultValue` if there is less than `offset` rows before the current row. For example, an
* `offset` of one will return the previous row at any given point in the window partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lag(e: Column, offset: Int, defaultValue: Any): Column = {
lag(e, offset, defaultValue, false)
}
/**
* Window function: returns the value that is `offset` rows before the current row, and
* `defaultValue` if there is less than `offset` rows before the current row. `ignoreNulls`
* determines whether null values of row are included in or eliminated from the calculation. For
* example, an `offset` of one will return the previous row at any given point in the window
* partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 3.2.0
*/
def lag(e: Column, offset: Int, defaultValue: Any, ignoreNulls: Boolean): Column =
Column.fn("lag", false, e, lit(offset), lit(defaultValue), lit(ignoreNulls))
/**
* Window function: returns the value that is `offset` rows after the current row, and `null` if
* there is less than `offset` rows after the current row. For example, an `offset` of one will
* return the next row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lead(columnName: String, offset: Int): Column = { lead(columnName, offset, null) }
/**
* Window function: returns the value that is `offset` rows after the current row, and `null` if
* there is less than `offset` rows after the current row. For example, an `offset` of one will
* return the next row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lead(e: Column, offset: Int): Column = { lead(e, offset, null) }
/**
* Window function: returns the value that is `offset` rows after the current row, and
* `defaultValue` if there is less than `offset` rows after the current row. For example, an
* `offset` of one will return the next row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lead(columnName: String, offset: Int, defaultValue: Any): Column = {
lead(Column(columnName), offset, defaultValue)
}
/**
* Window function: returns the value that is `offset` rows after the current row, and
* `defaultValue` if there is less than `offset` rows after the current row. For example, an
* `offset` of one will return the next row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lead(e: Column, offset: Int, defaultValue: Any): Column = {
lead(e, offset, defaultValue, false)
}
/**
* Window function: returns the value that is `offset` rows after the current row, and
* `defaultValue` if there is less than `offset` rows after the current row. `ignoreNulls`
* determines whether null values of row are included in or eliminated from the calculation. The
* default value of `ignoreNulls` is false. For example, an `offset` of one will return the next
* row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 3.2.0
*/
def lead(e: Column, offset: Int, defaultValue: Any, ignoreNulls: Boolean): Column =
Column.fn("lead", false, e, lit(offset), lit(defaultValue), lit(ignoreNulls))
/**
* Window function: returns the value that is the `offset`th row of the window frame (counting
* from 1), and `null` if the size of window frame is less than `offset` rows.
*
* It will return the `offset`th non-null value it sees when ignoreNulls is set to true. If all
* values are null, then null is returned.
*
* This is equivalent to the nth_value function in SQL.
*
* @group window_funcs
* @since 3.1.0
*/
def nth_value(e: Column, offset: Int, ignoreNulls: Boolean): Column =
Column.fn("nth_value", false, e, lit(offset), lit(ignoreNulls))
/**
* Window function: returns the value that is the `offset`th row of the window frame (counting
* from 1), and `null` if the size of window frame is less than `offset` rows.
*
* This is equivalent to the nth_value function in SQL.
*
* @group window_funcs
* @since 3.1.0
*/
def nth_value(e: Column, offset: Int): Column = nth_value(e, offset, false)
/**
* Window function: returns the ntile group id (from 1 to `n` inclusive) in an ordered window
* partition. For example, if `n` is 4, the first quarter of the rows will get value 1, the
* second quarter will get 2, the third quarter will get 3, and the last quarter will get 4.
*
* This is equivalent to the NTILE function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def ntile(n: Int): Column = Column.fn("ntile", lit(n))
/**
* Window function: returns the relative rank (i.e. percentile) of rows within a window
* partition.
*
* This is computed by:
* {{{
* (rank of row in its partition - 1) / (number of rows in the partition - 1)
* }}}
*
* This is equivalent to the PERCENT_RANK function in SQL.
*
* @group window_funcs
* @since 1.6.0
*/
def percent_rank(): Column = Column.fn("percent_rank")
/**
* Window function: returns the rank of rows within a window partition.
*
* The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking
* sequence when there are ties. That is, if you were ranking a competition using dense_rank and
* had three people tie for second place, you would say that all three were in second place and
* that the next person came in third. Rank would give me sequential numbers, making the person
* that came in third place (after the ties) would register as coming in fifth.
*
* This is equivalent to the RANK function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def rank(): Column = Column.fn("rank")
/**
* Window function: returns a sequential number starting at 1 within a window partition.
*
* @group window_funcs
* @since 1.6.0
*/
def row_number(): Column = Column.fn("row_number")
//////////////////////////////////////////////////////////////////////////////////////////////
// Non-aggregate functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Creates a new array column. The input columns must all have the same data type.
*
* @group array_funcs
* @since 1.4.0
*/
@scala.annotation.varargs
def array(cols: Column*): Column = Column.fn("array", cols: _*)
/**
* Creates a new array column. The input columns must all have the same data type.
*
* @group array_funcs
* @since 1.4.0
*/
@scala.annotation.varargs
def array(colName: String, colNames: String*): Column = {
array((colName +: colNames).map(col): _*)
}
/**
* Creates a new map column. The input columns must be grouped as key-value pairs, e.g. (key1,
* value1, key2, value2, ...). The key columns must all have the same data type, and can't be
* null. The value columns must all have the same data type.
*
* @group map_funcs
* @since 2.0
*/
@scala.annotation.varargs
def map(cols: Column*): Column = Column.fn("map", cols: _*)
/**
* Creates a struct with the given field names and values.
*
* @group struct_funcs
* @since 3.5.0
*/
def named_struct(cols: Column*): Column = Column.fn("named_struct", cols: _*)
/**
* Creates a new map column. The array in the first column is used for keys. The array in the
* second column is used for values. All elements in the array for key should not be null.
*
* @group map_funcs
* @since 2.4
*/
def map_from_arrays(keys: Column, values: Column): Column =
Column.fn("map_from_arrays", keys, values)
/**
* Creates a map after splitting the text into key/value pairs using delimiters. Both
* `pairDelim` and `keyValueDelim` are treated as regular expressions.
*
* @group map_funcs
* @since 3.5.0
*/
def str_to_map(text: Column, pairDelim: Column, keyValueDelim: Column): Column =
Column.fn("str_to_map", text, pairDelim, keyValueDelim)
/**
* Creates a map after splitting the text into key/value pairs using delimiters. The `pairDelim`
* is treated as regular expressions.
*
* @group map_funcs
* @since 3.5.0
*/
def str_to_map(text: Column, pairDelim: Column): Column =
Column.fn("str_to_map", text, pairDelim)
/**
* Creates a map after splitting the text into key/value pairs using delimiters.
*
* @group map_funcs
* @since 3.5.0
*/
def str_to_map(text: Column): Column = Column.fn("str_to_map", text)
/**
* Marks a DataFrame as small enough for use in broadcast joins.
*
* The following example marks the right DataFrame for broadcast hash join using `joinKey`.
* {{{
* // left and right are DataFrames
* left.join(broadcast(right), "joinKey")
* }}}
*
* @group normal_funcs
* @since 1.5.0
*/
def broadcast[DS[U] <: api.Dataset[U, DS]](df: DS[_]): df.type = {
df.hint("broadcast").asInstanceOf[df.type]
}
/**
* Returns the first column that is not null, or null if all inputs are null.
*
* For example, `coalesce(a, b, c)` will return a if a is not null, or b if a is null and b is
* not null, or c if both a and b are null but c is not null.
*
* @group conditional_funcs
* @since 1.3.0
*/
@scala.annotation.varargs
def coalesce(e: Column*): Column = Column.fn("coalesce", e: _*)
/**
* Creates a string column for the file name of the current Spark task.
*
* @group misc_funcs
* @since 1.6.0
*/
def input_file_name(): Column = Column.fn("input_file_name")
/**
* Return true iff the column is NaN.
*
* @group predicate_funcs
* @since 1.6.0
*/
def isnan(e: Column): Column = e.isNaN
/**
* Return true iff the column is null.
*
* @group predicate_funcs
* @since 1.6.0
*/
def isnull(e: Column): Column = e.isNull
/**
* A column expression that generates monotonically increasing 64-bit integers.
*
* The generated ID is guaranteed to be monotonically increasing and unique, but not
* consecutive. The current implementation puts the partition ID in the upper 31 bits, and the
* record number within each partition in the lower 33 bits. The assumption is that the data
* frame has less than 1 billion partitions, and each partition has less than 8 billion records.
*
* As an example, consider a `DataFrame` with two partitions, each with 3 records. This
* expression would return the following IDs:
*
* {{{
* 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.
* }}}
*
* @group misc_funcs
* @since 1.4.0
*/
@deprecated("Use monotonically_increasing_id()", "2.0.0")
def monotonicallyIncreasingId(): Column = monotonically_increasing_id()
/**
* A column expression that generates monotonically increasing 64-bit integers.
*
* The generated ID is guaranteed to be monotonically increasing and unique, but not
* consecutive. The current implementation puts the partition ID in the upper 31 bits, and the
* record number within each partition in the lower 33 bits. The assumption is that the data
* frame has less than 1 billion partitions, and each partition has less than 8 billion records.
*
* As an example, consider a `DataFrame` with two partitions, each with 3 records. This
* expression would return the following IDs:
*
* {{{
* 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.
* }}}
*
* @group misc_funcs
* @since 1.6.0
*/
def monotonically_increasing_id(): Column = Column.fn("monotonically_increasing_id")
/**
* Returns col1 if it is not NaN, or col2 if col1 is NaN.
*
* Both inputs should be floating point columns (DoubleType or FloatType).
*
* @group conditional_funcs
* @since 1.5.0
*/
def nanvl(col1: Column, col2: Column): Column = Column.fn("nanvl", col1, col2)
/**
* Unary minus, i.e. negate the expression.
* {{{
* // Select the amount column and negates all values.
* // Scala:
* df.select( -df("amount") )
*
* // Java:
* df.select( negate(df.col("amount")) );
* }}}
*
* @group math_funcs
* @since 1.3.0
*/
def negate(e: Column): Column = -e
/**
* Inversion of boolean expression, i.e. NOT.
* {{{
* // Scala: select rows that are not active (isActive === false)
* df.filter( !df("isActive") )
*
* // Java:
* df.filter( not(df.col("isActive")) );
* }}}
*
* @group predicate_funcs
* @since 1.3.0
*/
def not(e: Column): Column = !e
/**
* Generate a random column with independent and identically distributed (i.i.d.) samples
* uniformly distributed in [0.0, 1.0).
*
* @note
* The function is non-deterministic in general case.
*
* @group math_funcs
* @since 1.4.0
*/
def rand(seed: Long): Column = Column.fn("rand", lit(seed))
/**
* Generate a random column with independent and identically distributed (i.i.d.) samples
* uniformly distributed in [0.0, 1.0).
*
* @note
* The function is non-deterministic in general case.
*
* @group math_funcs
* @since 1.4.0
*/
def rand(): Column = rand(SparkClassUtils.random.nextLong)
/**
* Generate a column with independent and identically distributed (i.i.d.) samples from the
* standard normal distribution.
*
* @note
* The function is non-deterministic in general case.
*
* @group math_funcs
* @since 1.4.0
*/
def randn(seed: Long): Column = Column.fn("randn", lit(seed))
/**
* Generate a column with independent and identically distributed (i.i.d.) samples from the
* standard normal distribution.
*
* @note
* The function is non-deterministic in general case.
*
* @group math_funcs
* @since 1.4.0
*/
def randn(): Column = randn(SparkClassUtils.random.nextLong)
/**
* Partition ID.
*
* @note
* This is non-deterministic because it depends on data partitioning and task scheduling.
*
* @group misc_funcs
* @since 1.6.0
*/
def spark_partition_id(): Column = Column.fn("spark_partition_id")
/**
* Computes the square root of the specified float value.
*
* @group math_funcs
* @since 1.3.0
*/
def sqrt(e: Column): Column = Column.fn("sqrt", e)
/**
* Computes the square root of the specified float value.
*
* @group math_funcs
* @since 1.5.0
*/
def sqrt(colName: String): Column = sqrt(Column(colName))
/**
* Returns the sum of `left` and `right` and the result is null on overflow. The acceptable
* input types are the same with the `+` operator.
*
* @group math_funcs
* @since 3.5.0
*/
def try_add(left: Column, right: Column): Column = Column.fn("try_add", left, right)
/**
* Returns the mean calculated from values of a group and the result is null on overflow.
*
* @group math_funcs
* @since 3.5.0
*/
def try_avg(e: Column): Column = Column.fn("try_avg", e)
/**
* Returns `dividend``/``divisor`. It always performs floating point division. Its result is
* always null if `divisor` is 0.
*
* @group math_funcs
* @since 3.5.0
*/
def try_divide(left: Column, right: Column): Column = Column.fn("try_divide", left, right)
/**
* Returns the remainder of `dividend``/``divisor`. Its result is always null if `divisor` is 0.
*
* @group math_funcs
* @since 4.0.0
*/
def try_mod(left: Column, right: Column): Column = Column.fn("try_mod", left, right)
/**
* Returns `left``*``right` and the result is null on overflow. The acceptable input types are
* the same with the `*` operator.
*
* @group math_funcs
* @since 3.5.0
*/
def try_multiply(left: Column, right: Column): Column = Column.fn("try_multiply", left, right)
/**
* Returns `left``-``right` and the result is null on overflow. The acceptable input types are
* the same with the `-` operator.
*
* @group math_funcs
* @since 3.5.0
*/
def try_subtract(left: Column, right: Column): Column = Column.fn("try_subtract", left, right)
/**
* Returns the sum calculated from values of a group and the result is null on overflow.
*
* @group math_funcs
* @since 3.5.0
*/
def try_sum(e: Column): Column = Column.fn("try_sum", e)
/**
* Creates a new struct column. If the input column is a column in a `DataFrame`, or a derived
* column expression that is named (i.e. aliased), its name would be retained as the
* StructField's name, otherwise, the newly generated StructField's name would be auto generated
* as `col` with a suffix `index + 1`, i.e. col1, col2, col3, ...
*
* @group struct_funcs
* @since 1.4.0
*/
@scala.annotation.varargs
def struct(cols: Column*): Column = Column.fn("struct", cols: _*)
/**
* Creates a new struct column that composes multiple input columns.
*
* @group struct_funcs
* @since 1.4.0
*/
@scala.annotation.varargs
def struct(colName: String, colNames: String*): Column = {
struct((colName +: colNames).map(col): _*)
}
/**
* Evaluates a list of conditions and returns one of multiple possible result expressions. If
* otherwise is not defined at the end, null is returned for unmatched conditions.
*
* {{{
* // Example: encoding gender string column into integer.
*
* // Scala:
* people.select(when(people("gender") === "male", 0)
* .when(people("gender") === "female", 1)
* .otherwise(2))
*
* // Java:
* people.select(when(col("gender").equalTo("male"), 0)
* .when(col("gender").equalTo("female"), 1)
* .otherwise(2))
* }}}
*
* @group conditional_funcs
* @since 1.4.0
*/
def when(condition: Column, value: Any): Column =
Column(internal.CaseWhenOtherwise(Seq(condition.node -> lit(value).node)))
/**
* Computes bitwise NOT (~) of a number.
*
* @group bitwise_funcs
* @since 1.4.0
*/
@deprecated("Use bitwise_not", "3.2.0")
def bitwiseNOT(e: Column): Column = bitwise_not(e)
/**
* Computes bitwise NOT (~) of a number.
*
* @group bitwise_funcs
* @since 3.2.0
*/
def bitwise_not(e: Column): Column = Column.fn("~", e)
/**
* Returns the number of bits that are set in the argument expr as an unsigned 64-bit integer,
* or NULL if the argument is NULL.
*
* @group bitwise_funcs
* @since 3.5.0
*/
def bit_count(e: Column): Column = Column.fn("bit_count", e)
/**
* Returns the value of the bit (0 or 1) at the specified position. The positions are numbered
* from right to left, starting at zero. The position argument cannot be negative.
*
* @group bitwise_funcs
* @since 3.5.0
*/
def bit_get(e: Column, pos: Column): Column = Column.fn("bit_get", e, pos)
/**
* Returns the value of the bit (0 or 1) at the specified position. The positions are numbered
* from right to left, starting at zero. The position argument cannot be negative.
*
* @group bitwise_funcs
* @since 3.5.0
*/
def getbit(e: Column, pos: Column): Column = Column.fn("getbit", e, pos)
/**
* Parses the expression string into the column that it represents, similar to
* [[Dataset#selectExpr]].
* {{{
* // get the number of words of each length
* df.groupBy(expr("length(word)")).count()
* }}}
*
* @group normal_funcs
*/
def expr(expr: String): Column = Column(internal.SqlExpression(expr))
//////////////////////////////////////////////////////////////////////////////////////////////
// Math Functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the absolute value of a numeric value.
*
* @group math_funcs
* @since 1.3.0
*/
def abs(e: Column): Column = Column.fn("abs", e)
/**
* @return
* inverse cosine of `e` in radians, as if computed by `java.lang.Math.acos`
*
* @group math_funcs
* @since 1.4.0
*/
def acos(e: Column): Column = Column.fn("acos", e)
/**
* @return
* inverse cosine of `columnName`, as if computed by `java.lang.Math.acos`
*
* @group math_funcs
* @since 1.4.0
*/
def acos(columnName: String): Column = acos(Column(columnName))
/**
* @return
* inverse hyperbolic cosine of `e`
*
* @group math_funcs
* @since 3.1.0
*/
def acosh(e: Column): Column = Column.fn("acosh", e)
/**
* @return
* inverse hyperbolic cosine of `columnName`
*
* @group math_funcs
* @since 3.1.0
*/
def acosh(columnName: String): Column = acosh(Column(columnName))
/**
* @return
* inverse sine of `e` in radians, as if computed by `java.lang.Math.asin`
*
* @group math_funcs
* @since 1.4.0
*/
def asin(e: Column): Column = Column.fn("asin", e)
/**
* @return
* inverse sine of `columnName`, as if computed by `java.lang.Math.asin`
*
* @group math_funcs
* @since 1.4.0
*/
def asin(columnName: String): Column = asin(Column(columnName))
/**
* @return
* inverse hyperbolic sine of `e`
*
* @group math_funcs
* @since 3.1.0
*/
def asinh(e: Column): Column = Column.fn("asinh", e)
/**
* @return
* inverse hyperbolic sine of `columnName`
*
* @group math_funcs
* @since 3.1.0
*/
def asinh(columnName: String): Column = asinh(Column(columnName))
/**
* @return
* inverse tangent of `e` as if computed by `java.lang.Math.atan`
*
* @group math_funcs
* @since 1.4.0
*/
def atan(e: Column): Column = Column.fn("atan", e)
/**
* @return
* inverse tangent of `columnName`, as if computed by `java.lang.Math.atan`
*
* @group math_funcs
* @since 1.4.0
*/
def atan(columnName: String): Column = atan(Column(columnName))
/**
* @param y
* coordinate on y-axis
* @param x
* coordinate on x-axis
* @return
* the theta component of the point (r, theta) in polar coordinates that
* corresponds to the point (x, y) in Cartesian coordinates, as if computed by
* `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(y: Column, x: Column): Column = Column.fn("atan2", y, x)
/**
* @param y
* coordinate on y-axis
* @param xName
* coordinate on x-axis
* @return
* the theta component of the point (r, theta) in polar coordinates that
* corresponds to the point (x, y) in Cartesian coordinates, as if computed by
* `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(y: Column, xName: String): Column = atan2(y, Column(xName))
/**
* @param yName
* coordinate on y-axis
* @param x
* coordinate on x-axis
* @return
* the theta component of the point (r, theta) in polar coordinates that
* corresponds to the point (x, y) in Cartesian coordinates, as if computed by
* `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yName: String, x: Column): Column = atan2(Column(yName), x)
/**
* @param yName
* coordinate on y-axis
* @param xName
* coordinate on x-axis
* @return
* the theta component of the point (r, theta) in polar coordinates that
* corresponds to the point (x, y) in Cartesian coordinates, as if computed by
* `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yName: String, xName: String): Column =
atan2(Column(yName), Column(xName))
/**
* @param y
* coordinate on y-axis
* @param xValue
* coordinate on x-axis
* @return
* the theta component of the point (r, theta) in polar coordinates that
* corresponds to the point (x, y) in Cartesian coordinates, as if computed by
* `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(y: Column, xValue: Double): Column = atan2(y, lit(xValue))
/**
* @param yName
* coordinate on y-axis
* @param xValue
* coordinate on x-axis
* @return
* the theta component of the point (r, theta) in polar coordinates that
* corresponds to the point (x, y) in Cartesian coordinates, as if computed by
* `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yName: String, xValue: Double): Column = atan2(Column(yName), xValue)
/**
* @param yValue
* coordinate on y-axis
* @param x
* coordinate on x-axis
* @return
* the theta component of the point (r, theta) in polar coordinates that
* corresponds to the point (x, y) in Cartesian coordinates, as if computed by
* `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yValue: Double, x: Column): Column = atan2(lit(yValue), x)
/**
* @param yValue
* coordinate on y-axis
* @param xName
* coordinate on x-axis
* @return
* the theta component of the point (r, theta) in polar coordinates that
* corresponds to the point (x, y) in Cartesian coordinates, as if computed by
* `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yValue: Double, xName: String): Column = atan2(yValue, Column(xName))
/**
* @return
* inverse hyperbolic tangent of `e`
*
* @group math_funcs
* @since 3.1.0
*/
def atanh(e: Column): Column = Column.fn("atanh", e)
/**
* @return
* inverse hyperbolic tangent of `columnName`
*
* @group math_funcs
* @since 3.1.0
*/
def atanh(columnName: String): Column = atanh(Column(columnName))
/**
* An expression that returns the string representation of the binary value of the given long
* column. For example, bin("12") returns "1100".
*
* @group math_funcs
* @since 1.5.0
*/
def bin(e: Column): Column = Column.fn("bin", e)
/**
* An expression that returns the string representation of the binary value of the given long
* column. For example, bin("12") returns "1100".
*
* @group math_funcs
* @since 1.5.0
*/
def bin(columnName: String): Column = bin(Column(columnName))
/**
* Computes the cube-root of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def cbrt(e: Column): Column = Column.fn("cbrt", e)
/**
* Computes the cube-root of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def cbrt(columnName: String): Column = cbrt(Column(columnName))
/**
* Computes the ceiling of the given value of `e` to `scale` decimal places.
*
* @group math_funcs
* @since 3.3.0
*/
def ceil(e: Column, scale: Column): Column = Column.fn("ceil", e, scale)
/**
* Computes the ceiling of the given value of `e` to 0 decimal places.
*
* @group math_funcs
* @since 1.4.0
*/
def ceil(e: Column): Column = Column.fn("ceil", e)
/**
* Computes the ceiling of the given value of `e` to 0 decimal places.
*
* @group math_funcs
* @since 1.4.0
*/
def ceil(columnName: String): Column = ceil(Column(columnName))
/**
* Computes the ceiling of the given value of `e` to `scale` decimal places.
*
* @group math_funcs
* @since 3.5.0
*/
def ceiling(e: Column, scale: Column): Column = Column.fn("ceiling", e, scale)
/**
* Computes the ceiling of the given value of `e` to 0 decimal places.
*
* @group math_funcs
* @since 3.5.0
*/
def ceiling(e: Column): Column = Column.fn("ceiling", e)
/**
* Convert a number in a string column from one base to another.
*
* @group math_funcs
* @since 1.5.0
*/
def conv(num: Column, fromBase: Int, toBase: Int): Column =
Column.fn("conv", num, lit(fromBase), lit(toBase))
/**
* @param e
* angle in radians
* @return
* cosine of the angle, as if computed by `java.lang.Math.cos`
*
* @group math_funcs
* @since 1.4.0
*/
def cos(e: Column): Column = Column.fn("cos", e)
/**
* @param columnName
* angle in radians
* @return
* cosine of the angle, as if computed by `java.lang.Math.cos`
*
* @group math_funcs
* @since 1.4.0
*/
def cos(columnName: String): Column = cos(Column(columnName))
/**
* @param e
* hyperbolic angle
* @return
* hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh`
*
* @group math_funcs
* @since 1.4.0
*/
def cosh(e: Column): Column = Column.fn("cosh", e)
/**
* @param columnName
* hyperbolic angle
* @return
* hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh`
*
* @group math_funcs
* @since 1.4.0
*/
def cosh(columnName: String): Column = cosh(Column(columnName))
/**
* @param e
* angle in radians
* @return
* cotangent of the angle
*
* @group math_funcs
* @since 3.3.0
*/
def cot(e: Column): Column = Column.fn("cot", e)
/**
* @param e
* angle in radians
* @return
* cosecant of the angle
*
* @group math_funcs
* @since 3.3.0
*/
def csc(e: Column): Column = Column.fn("csc", e)
/**
* Returns Euler's number.
*
* @group math_funcs
* @since 3.5.0
*/
def e(): Column = Column.fn("e")
/**
* Computes the exponential of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def exp(e: Column): Column = Column.fn("exp", e)
/**
* Computes the exponential of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def exp(columnName: String): Column = exp(Column(columnName))
/**
* Computes the exponential of the given value minus one.
*
* @group math_funcs
* @since 1.4.0
*/
def expm1(e: Column): Column = Column.fn("expm1", e)
/**
* Computes the exponential of the given column minus one.
*
* @group math_funcs
* @since 1.4.0
*/
def expm1(columnName: String): Column = expm1(Column(columnName))
/**
* Computes the factorial of the given value.
*
* @group math_funcs
* @since 1.5.0
*/
def factorial(e: Column): Column = Column.fn("factorial", e)
/**
* Computes the floor of the given value of `e` to `scale` decimal places.
*
* @group math_funcs
* @since 3.3.0
*/
def floor(e: Column, scale: Column): Column = Column.fn("floor", e, scale)
/**
* Computes the floor of the given value of `e` to 0 decimal places.
*
* @group math_funcs
* @since 1.4.0
*/
def floor(e: Column): Column = Column.fn("floor", e)
/**
* Computes the floor of the given column value to 0 decimal places.
*
* @group math_funcs
* @since 1.4.0
*/
def floor(columnName: String): Column = floor(Column(columnName))
/**
* Returns the greatest value of the list of values, skipping null values. This function takes
* at least 2 parameters. It will return null iff all parameters are null.
*
* @group math_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def greatest(exprs: Column*): Column = Column.fn("greatest", exprs: _*)
/**
* Returns the greatest value of the list of column names, skipping null values. This function
* takes at least 2 parameters. It will return null iff all parameters are null.
*
* @group math_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def greatest(columnName: String, columnNames: String*): Column = {
greatest((columnName +: columnNames).map(Column.apply): _*)
}
/**
* Computes hex value of the given column.
*
* @group math_funcs
* @since 1.5.0
*/
def hex(column: Column): Column = Column.fn("hex", column)
/**
* Inverse of hex. Interprets each pair of characters as a hexadecimal number and converts to
* the byte representation of number.
*
* @group math_funcs
* @since 1.5.0
*/
def unhex(column: Column): Column = Column.fn("unhex", column)
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Column, r: Column): Column = Column.fn("hypot", l, r)
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Column, rightName: String): Column = hypot(l, Column(rightName))
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(leftName: String, r: Column): Column = hypot(Column(leftName), r)
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(leftName: String, rightName: String): Column =
hypot(Column(leftName), Column(rightName))
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Column, r: Double): Column = hypot(l, lit(r))
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(leftName: String, r: Double): Column = hypot(Column(leftName), r)
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Double, r: Column): Column = hypot(lit(l), r)
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Double, rightName: String): Column = hypot(l, Column(rightName))
/**
* Returns the least value of the list of values, skipping null values. This function takes at
* least 2 parameters. It will return null iff all parameters are null.
*
* @group math_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def least(exprs: Column*): Column = Column.fn("least", exprs: _*)
/**
* Returns the least value of the list of column names, skipping null values. This function
* takes at least 2 parameters. It will return null iff all parameters are null.
*
* @group math_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def least(columnName: String, columnNames: String*): Column = {
least((columnName +: columnNames).map(Column.apply): _*)
}
/**
* Computes the natural logarithm of the given value.
*
* @group math_funcs
* @since 3.5.0
*/
def ln(e: Column): Column = Column.fn("ln", e)
/**
* Computes the natural logarithm of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def log(e: Column): Column = ln(e)
/**
* Computes the natural logarithm of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def log(columnName: String): Column = log(Column(columnName))
/**
* Returns the first argument-base logarithm of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def log(base: Double, a: Column): Column = Column.fn("log", lit(base), a)
/**
* Returns the first argument-base logarithm of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def log(base: Double, columnName: String): Column = log(base, Column(columnName))
/**
* Computes the logarithm of the given value in base 10.
*
* @group math_funcs
* @since 1.4.0
*/
def log10(e: Column): Column = Column.fn("log10", e)
/**
* Computes the logarithm of the given value in base 10.
*
* @group math_funcs
* @since 1.4.0
*/
def log10(columnName: String): Column = log10(Column(columnName))
/**
* Computes the natural logarithm of the given value plus one.
*
* @group math_funcs
* @since 1.4.0
*/
def log1p(e: Column): Column = Column.fn("log1p", e)
/**
* Computes the natural logarithm of the given column plus one.
*
* @group math_funcs
* @since 1.4.0
*/
def log1p(columnName: String): Column = log1p(Column(columnName))
/**
* Computes the logarithm of the given column in base 2.
*
* @group math_funcs
* @since 1.5.0
*/
def log2(expr: Column): Column = Column.fn("log2", expr)
/**
* Computes the logarithm of the given value in base 2.
*
* @group math_funcs
* @since 1.5.0
*/
def log2(columnName: String): Column = log2(Column(columnName))
/**
* Returns the negated value.
*
* @group math_funcs
* @since 3.5.0
*/
def negative(e: Column): Column = Column.fn("negative", e)
/**
* Returns Pi.
*
* @group math_funcs
* @since 3.5.0
*/
def pi(): Column = Column.fn("pi")
/**
* Returns the value.
*
* @group math_funcs
* @since 3.5.0
*/
def positive(e: Column): Column = Column.fn("positive", e)
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Column, r: Column): Column = Column.fn("power", l, r)
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Column, rightName: String): Column = pow(l, Column(rightName))
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(leftName: String, r: Column): Column = pow(Column(leftName), r)
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(leftName: String, rightName: String): Column = pow(Column(leftName), Column(rightName))
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Column, r: Double): Column = pow(l, lit(r))
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(leftName: String, r: Double): Column = pow(Column(leftName), r)
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Double, r: Column): Column = pow(lit(l), r)
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Double, rightName: String): Column = pow(l, Column(rightName))
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 3.5.0
*/
def power(l: Column, r: Column): Column = Column.fn("power", l, r)
/**
* Returns the positive value of dividend mod divisor.
*
* @group math_funcs
* @since 1.5.0
*/
def pmod(dividend: Column, divisor: Column): Column = Column.fn("pmod", dividend, divisor)
/**
* Returns the double value that is closest in value to the argument and is equal to a
* mathematical integer.
*
* @group math_funcs
* @since 1.4.0
*/
def rint(e: Column): Column = Column.fn("rint", e)
/**
* Returns the double value that is closest in value to the argument and is equal to a
* mathematical integer.
*
* @group math_funcs
* @since 1.4.0
*/
def rint(columnName: String): Column = rint(Column(columnName))
/**
* Returns the value of the column `e` rounded to 0 decimal places with HALF_UP round mode.
*
* @group math_funcs
* @since 1.5.0
*/
def round(e: Column): Column = round(e, 0)
/**
* Round the value of `e` to `scale` decimal places with HALF_UP round mode if `scale` is
* greater than or equal to 0 or at integral part when `scale` is less than 0.
*
* @group math_funcs
* @since 1.5.0
*/
def round(e: Column, scale: Int): Column = Column.fn("round", e, lit(scale))
/**
* Round the value of `e` to `scale` decimal places with HALF_UP round mode if `scale` is
* greater than or equal to 0 or at integral part when `scale` is less than 0.
*
* @group math_funcs
* @since 4.0.0
*/
def round(e: Column, scale: Column): Column = Column.fn("round", e, scale)
/**
* Returns the value of the column `e` rounded to 0 decimal places with HALF_EVEN round mode.
*
* @group math_funcs
* @since 2.0.0
*/
def bround(e: Column): Column = bround(e, 0)
/**
* Round the value of `e` to `scale` decimal places with HALF_EVEN round mode if `scale` is
* greater than or equal to 0 or at integral part when `scale` is less than 0.
*
* @group math_funcs
* @since 2.0.0
*/
def bround(e: Column, scale: Int): Column = Column.fn("bround", e, lit(scale))
/**
* Round the value of `e` to `scale` decimal places with HALF_EVEN round mode if `scale` is
* greater than or equal to 0 or at integral part when `scale` is less than 0.
*
* @group math_funcs
* @since 4.0.0
*/
def bround(e: Column, scale: Column): Column = Column.fn("bround", e, scale)
/**
* @param e
* angle in radians
* @return
* secant of the angle
*
* @group math_funcs
* @since 3.3.0
*/
def sec(e: Column): Column = Column.fn("sec", e)
/**
* Shift the given value numBits left. If the given value is a long value, this function will
* return a long value else it will return an integer value.
*
* @group bitwise_funcs
* @since 1.5.0
*/
@deprecated("Use shiftleft", "3.2.0")
def shiftLeft(e: Column, numBits: Int): Column = shiftleft(e, numBits)
/**
* Shift the given value numBits left. If the given value is a long value, this function will
* return a long value else it will return an integer value.
*
* @group bitwise_funcs
* @since 3.2.0
*/
def shiftleft(e: Column, numBits: Int): Column = Column.fn("shiftleft", e, lit(numBits))
/**
* (Signed) shift the given value numBits right. If the given value is a long value, it will
* return a long value else it will return an integer value.
*
* @group bitwise_funcs
* @since 1.5.0
*/
@deprecated("Use shiftright", "3.2.0")
def shiftRight(e: Column, numBits: Int): Column = shiftright(e, numBits)
/**
* (Signed) shift the given value numBits right. If the given value is a long value, it will
* return a long value else it will return an integer value.
*
* @group bitwise_funcs
* @since 3.2.0
*/
def shiftright(e: Column, numBits: Int): Column = Column.fn("shiftright", e, lit(numBits))
/**
* Unsigned shift the given value numBits right. If the given value is a long value, it will
* return a long value else it will return an integer value.
*
* @group bitwise_funcs
* @since 1.5.0
*/
@deprecated("Use shiftrightunsigned", "3.2.0")
def shiftRightUnsigned(e: Column, numBits: Int): Column = shiftrightunsigned(e, numBits)
/**
* Unsigned shift the given value numBits right. If the given value is a long value, it will
* return a long value else it will return an integer value.
*
* @group bitwise_funcs
* @since 3.2.0
*/
def shiftrightunsigned(e: Column, numBits: Int): Column =
Column.fn("shiftrightunsigned", e, lit(numBits))
/**
* Computes the signum of the given value.
*
* @group math_funcs
* @since 3.5.0
*/
def sign(e: Column): Column = Column.fn("sign", e)
/**
* Computes the signum of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def signum(e: Column): Column = Column.fn("signum", e)
/**
* Computes the signum of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def signum(columnName: String): Column = signum(Column(columnName))
/**
* @param e
* angle in radians
* @return
* sine of the angle, as if computed by `java.lang.Math.sin`
*
* @group math_funcs
* @since 1.4.0
*/
def sin(e: Column): Column = Column.fn("sin", e)
/**
* @param columnName
* angle in radians
* @return
* sine of the angle, as if computed by `java.lang.Math.sin`
*
* @group math_funcs
* @since 1.4.0
*/
def sin(columnName: String): Column = sin(Column(columnName))
/**
* @param e
* hyperbolic angle
* @return
* hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh`
*
* @group math_funcs
* @since 1.4.0
*/
def sinh(e: Column): Column = Column.fn("sinh", e)
/**
* @param columnName
* hyperbolic angle
* @return
* hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh`
*
* @group math_funcs
* @since 1.4.0
*/
def sinh(columnName: String): Column = sinh(Column(columnName))
/**
* @param e
* angle in radians
* @return
* tangent of the given value, as if computed by `java.lang.Math.tan`
*
* @group math_funcs
* @since 1.4.0
*/
def tan(e: Column): Column = Column.fn("tan", e)
/**
* @param columnName
* angle in radians
* @return
* tangent of the given value, as if computed by `java.lang.Math.tan`
*
* @group math_funcs
* @since 1.4.0
*/
def tan(columnName: String): Column = tan(Column(columnName))
/**
* @param e
* hyperbolic angle
* @return
* hyperbolic tangent of the given value, as if computed by `java.lang.Math.tanh`
*
* @group math_funcs
* @since 1.4.0
*/
def tanh(e: Column): Column = Column.fn("tanh", e)
/**
* @param columnName
* hyperbolic angle
* @return
* hyperbolic tangent of the given value, as if computed by `java.lang.Math.tanh`
*
* @group math_funcs
* @since 1.4.0
*/
def tanh(columnName: String): Column = tanh(Column(columnName))
/**
* @group math_funcs
* @since 1.4.0
*/
@deprecated("Use degrees", "2.1.0")
def toDegrees(e: Column): Column = degrees(e)
/**
* @group math_funcs
* @since 1.4.0
*/
@deprecated("Use degrees", "2.1.0")
def toDegrees(columnName: String): Column = degrees(Column(columnName))
/**
* Converts an angle measured in radians to an approximately equivalent angle measured in
* degrees.
*
* @param e
* angle in radians
* @return
* angle in degrees, as if computed by `java.lang.Math.toDegrees`
*
* @group math_funcs
* @since 2.1.0
*/
def degrees(e: Column): Column = Column.fn("degrees", e)
/**
* Converts an angle measured in radians to an approximately equivalent angle measured in
* degrees.
*
* @param columnName
* angle in radians
* @return
* angle in degrees, as if computed by `java.lang.Math.toDegrees`
*
* @group math_funcs
* @since 2.1.0
*/
def degrees(columnName: String): Column = degrees(Column(columnName))
/**
* @group math_funcs
* @since 1.4.0
*/
@deprecated("Use radians", "2.1.0")
def toRadians(e: Column): Column = radians(e)
/**
* @group math_funcs
* @since 1.4.0
*/
@deprecated("Use radians", "2.1.0")
def toRadians(columnName: String): Column = radians(Column(columnName))
/**
* Converts an angle measured in degrees to an approximately equivalent angle measured in
* radians.
*
* @param e
* angle in degrees
* @return
* angle in radians, as if computed by `java.lang.Math.toRadians`
*
* @group math_funcs
* @since 2.1.0
*/
def radians(e: Column): Column = Column.fn("radians", e)
/**
* Converts an angle measured in degrees to an approximately equivalent angle measured in
* radians.
*
* @param columnName
* angle in degrees
* @return
* angle in radians, as if computed by `java.lang.Math.toRadians`
*
* @group math_funcs
* @since 2.1.0
*/
def radians(columnName: String): Column = radians(Column(columnName))
/**
* Returns the bucket number into which the value of this expression would fall after being
* evaluated. Note that input arguments must follow conditions listed below; otherwise, the
* method will return null.
*
* @param v
* value to compute a bucket number in the histogram
* @param min
* minimum value of the histogram
* @param max
* maximum value of the histogram
* @param numBucket
* the number of buckets
* @return
* the bucket number into which the value would fall after being evaluated
* @group math_funcs
* @since 3.5.0
*/
def width_bucket(v: Column, min: Column, max: Column, numBucket: Column): Column =
Column.fn("width_bucket", v, min, max, numBucket)
//////////////////////////////////////////////////////////////////////////////////////////////
// Misc functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns the current catalog.
*
* @group misc_funcs
* @since 3.5.0
*/
def current_catalog(): Column = Column.fn("current_catalog")
/**
* Returns the current database.
*
* @group misc_funcs
* @since 3.5.0
*/
def current_database(): Column = Column.fn("current_database")
/**
* Returns the current schema.
*
* @group misc_funcs
* @since 3.5.0
*/
def current_schema(): Column = Column.fn("current_schema")
/**
* Returns the user name of current execution context.
*
* @group misc_funcs
* @since 3.5.0
*/
def current_user(): Column = Column.fn("current_user")
/**
* Calculates the MD5 digest of a binary column and returns the value as a 32 character hex
* string.
*
* @group hash_funcs
* @since 1.5.0
*/
def md5(e: Column): Column = Column.fn("md5", e)
/**
* Calculates the SHA-1 digest of a binary column and returns the value as a 40 character hex
* string.
*
* @group hash_funcs
* @since 1.5.0
*/
def sha1(e: Column): Column = Column.fn("sha1", e)
/**
* Calculates the SHA-2 family of hash functions of a binary column and returns the value as a
* hex string.
*
* @param e
* column to compute SHA-2 on.
* @param numBits
* one of 224, 256, 384, or 512.
*
* @group hash_funcs
* @since 1.5.0
*/
def sha2(e: Column, numBits: Int): Column = {
require(
Seq(0, 224, 256, 384, 512).contains(numBits),
s"numBits $numBits is not in the permitted values (0, 224, 256, 384, 512)")
Column.fn("sha2", e, lit(numBits))
}
/**
* Calculates the cyclic redundancy check value (CRC32) of a binary column and returns the value
* as a bigint.
*
* @group hash_funcs
* @since 1.5.0
*/
def crc32(e: Column): Column = Column.fn("crc32", e)
/**
* Calculates the hash code of given columns, and returns the result as an int column.
*
* @group hash_funcs
* @since 2.0.0
*/
@scala.annotation.varargs
def hash(cols: Column*): Column = Column.fn("hash", cols: _*)
/**
* Calculates the hash code of given columns using the 64-bit variant of the xxHash algorithm,
* and returns the result as a long column. The hash computation uses an initial seed of 42.
*
* @group hash_funcs
* @since 3.0.0
*/
@scala.annotation.varargs
def xxhash64(cols: Column*): Column = Column.fn("xxhash64", cols: _*)
/**
* Returns null if the condition is true, and throws an exception otherwise.
*
* @group misc_funcs
* @since 3.1.0
*/
def assert_true(c: Column): Column = Column.fn("assert_true", c)
/**
* Returns null if the condition is true; throws an exception with the error message otherwise.
*
* @group misc_funcs
* @since 3.1.0
*/
def assert_true(c: Column, e: Column): Column = Column.fn("assert_true", c, e)
/**
* Throws an exception with the provided error message.
*
* @group misc_funcs
* @since 3.1.0
*/
def raise_error(c: Column): Column = Column.fn("raise_error", c)
/**
* Returns the estimated number of unique values given the binary representation of a
* Datasketches HllSketch.
*
* @group misc_funcs
* @since 3.5.0
*/
def hll_sketch_estimate(c: Column): Column = Column.fn("hll_sketch_estimate", c)
/**
* Returns the estimated number of unique values given the binary representation of a
* Datasketches HllSketch.
*
* @group misc_funcs
* @since 3.5.0
*/
def hll_sketch_estimate(columnName: String): Column = {
hll_sketch_estimate(Column(columnName))
}
/**
* Merges two binary representations of Datasketches HllSketch objects, using a Datasketches
* Union object. Throws an exception if sketches have different lgConfigK values.
*
* @group misc_funcs
* @since 3.5.0
*/
def hll_union(c1: Column, c2: Column): Column =
Column.fn("hll_union", c1, c2)
/**
* Merges two binary representations of Datasketches HllSketch objects, using a Datasketches
* Union object. Throws an exception if sketches have different lgConfigK values.
*
* @group misc_funcs
* @since 3.5.0
*/
def hll_union(columnName1: String, columnName2: String): Column = {
hll_union(Column(columnName1), Column(columnName2))
}
/**
* Merges two binary representations of Datasketches HllSketch objects, using a Datasketches
* Union object. Throws an exception if sketches have different lgConfigK values and
* allowDifferentLgConfigK is set to false.
*
* @group misc_funcs
* @since 3.5.0
*/
def hll_union(c1: Column, c2: Column, allowDifferentLgConfigK: Boolean): Column =
Column.fn("hll_union", c1, c2, lit(allowDifferentLgConfigK))
/**
* Merges two binary representations of Datasketches HllSketch objects, using a Datasketches
* Union object. Throws an exception if sketches have different lgConfigK values and
* allowDifferentLgConfigK is set to false.
*
* @group misc_funcs
* @since 3.5.0
*/
def hll_union(
columnName1: String,
columnName2: String,
allowDifferentLgConfigK: Boolean): Column = {
hll_union(Column(columnName1), Column(columnName2), allowDifferentLgConfigK)
}
/**
* Returns the user name of current execution context.
*
* @group misc_funcs
* @since 3.5.0
*/
def user(): Column = Column.fn("user")
/**
* Returns the user name of current execution context.
*
* @group misc_funcs
* @since 4.0.0
*/
def session_user(): Column = Column.fn("session_user")
/**
* Returns an universally unique identifier (UUID) string. The value is returned as a canonical
* UUID 36-character string.
*
* @group misc_funcs
* @since 3.5.0
*/
def uuid(): Column = Column.fn("uuid", lit(SparkClassUtils.random.nextLong))
/**
* Returns an encrypted value of `input` using AES in given `mode` with the specified `padding`.
* Key lengths of 16, 24 and 32 bits are supported. Supported combinations of (`mode`,
* `padding`) are ('ECB', 'PKCS'), ('GCM', 'NONE') and ('CBC', 'PKCS'). Optional initialization
* vectors (IVs) are only supported for CBC and GCM modes. These must be 16 bytes for CBC and 12
* bytes for GCM. If not provided, a random vector will be generated and prepended to the
* output. Optional additional authenticated data (AAD) is only supported for GCM. If provided
* for encryption, the identical AAD value must be provided for decryption. The default mode is
* GCM.
*
* @param input
* The binary value to encrypt.
* @param key
* The passphrase to use to encrypt the data.
* @param mode
* Specifies which block cipher mode should be used to encrypt messages. Valid modes: ECB,
* GCM, CBC.
* @param padding
* Specifies how to pad messages whose length is not a multiple of the block size. Valid
* values: PKCS, NONE, DEFAULT. The DEFAULT padding means PKCS for ECB, NONE for GCM and PKCS
* for CBC.
* @param iv
* Optional initialization vector. Only supported for CBC and GCM modes. Valid values: None or
* "". 16-byte array for CBC mode. 12-byte array for GCM mode.
* @param aad
* Optional additional authenticated data. Only supported for GCM mode. This can be any
* free-form input and must be provided for both encryption and decryption.
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_encrypt(
input: Column,
key: Column,
mode: Column,
padding: Column,
iv: Column,
aad: Column): Column = Column.fn("aes_encrypt", input, key, mode, padding, iv, aad)
/**
* Returns an encrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.aes_encrypt(Column, Column, Column, Column, Column,
* Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_encrypt(input: Column, key: Column, mode: Column, padding: Column, iv: Column): Column =
Column.fn("aes_encrypt", input, key, mode, padding, iv)
/**
* Returns an encrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.aes_encrypt(Column, Column, Column, Column, Column,
* Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_encrypt(input: Column, key: Column, mode: Column, padding: Column): Column =
Column.fn("aes_encrypt", input, key, mode, padding)
/**
* Returns an encrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.aes_encrypt(Column, Column, Column, Column, Column,
* Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_encrypt(input: Column, key: Column, mode: Column): Column =
Column.fn("aes_encrypt", input, key, mode)
/**
* Returns an encrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.aes_encrypt(Column, Column, Column, Column, Column,
* Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_encrypt(input: Column, key: Column): Column =
Column.fn("aes_encrypt", input, key)
/**
* Returns a decrypted value of `input` using AES in `mode` with `padding`. Key lengths of 16,
* 24 and 32 bits are supported. Supported combinations of (`mode`, `padding`) are ('ECB',
* 'PKCS'), ('GCM', 'NONE') and ('CBC', 'PKCS'). Optional additional authenticated data (AAD) is
* only supported for GCM. If provided for encryption, the identical AAD value must be provided
* for decryption. The default mode is GCM.
*
* @param input
* The binary value to decrypt.
* @param key
* The passphrase to use to decrypt the data.
* @param mode
* Specifies which block cipher mode should be used to decrypt messages. Valid modes: ECB,
* GCM, CBC.
* @param padding
* Specifies how to pad messages whose length is not a multiple of the block size. Valid
* values: PKCS, NONE, DEFAULT. The DEFAULT padding means PKCS for ECB, NONE for GCM and PKCS
* for CBC.
* @param aad
* Optional additional authenticated data. Only supported for GCM mode. This can be any
* free-form input and must be provided for both encryption and decryption.
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_decrypt(
input: Column,
key: Column,
mode: Column,
padding: Column,
aad: Column): Column =
Column.fn("aes_decrypt", input, key, mode, padding, aad)
/**
* Returns a decrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.aes_decrypt(Column, Column, Column, Column, Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_decrypt(input: Column, key: Column, mode: Column, padding: Column): Column =
Column.fn("aes_decrypt", input, key, mode, padding)
/**
* Returns a decrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.aes_decrypt(Column, Column, Column, Column, Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_decrypt(input: Column, key: Column, mode: Column): Column =
Column.fn("aes_decrypt", input, key, mode)
/**
* Returns a decrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.aes_decrypt(Column, Column, Column, Column, Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def aes_decrypt(input: Column, key: Column): Column =
Column.fn("aes_decrypt", input, key)
/**
* This is a special version of `aes_decrypt` that performs the same operation, but returns a
* NULL value instead of raising an error if the decryption cannot be performed.
*
* @param input
* The binary value to decrypt.
* @param key
* The passphrase to use to decrypt the data.
* @param mode
* Specifies which block cipher mode should be used to decrypt messages. Valid modes: ECB,
* GCM, CBC.
* @param padding
* Specifies how to pad messages whose length is not a multiple of the block size. Valid
* values: PKCS, NONE, DEFAULT. The DEFAULT padding means PKCS for ECB, NONE for GCM and PKCS
* for CBC.
* @param aad
* Optional additional authenticated data. Only supported for GCM mode. This can be any
* free-form input and must be provided for both encryption and decryption.
*
* @group misc_funcs
* @since 3.5.0
*/
def try_aes_decrypt(
input: Column,
key: Column,
mode: Column,
padding: Column,
aad: Column): Column =
Column.fn("try_aes_decrypt", input, key, mode, padding, aad)
/**
* Returns a decrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.try_aes_decrypt(Column, Column, Column, Column, Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def try_aes_decrypt(input: Column, key: Column, mode: Column, padding: Column): Column =
Column.fn("try_aes_decrypt", input, key, mode, padding)
/**
* Returns a decrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.try_aes_decrypt(Column, Column, Column, Column, Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def try_aes_decrypt(input: Column, key: Column, mode: Column): Column =
Column.fn("try_aes_decrypt", input, key, mode)
/**
* Returns a decrypted value of `input`.
*
* @see
* `org.apache.spark.sql.functions.try_aes_decrypt(Column, Column, Column, Column, Column)`
*
* @group misc_funcs
* @since 3.5.0
*/
def try_aes_decrypt(input: Column, key: Column): Column =
Column.fn("try_aes_decrypt", input, key)
/**
* Returns a sha1 hash value as a hex string of the `col`.
*
* @group hash_funcs
* @since 3.5.0
*/
def sha(col: Column): Column = Column.fn("sha", col)
/**
* Returns the length of the block being read, or -1 if not available.
*
* @group misc_funcs
* @since 3.5.0
*/
def input_file_block_length(): Column = Column.fn("input_file_block_length")
/**
* Returns the start offset of the block being read, or -1 if not available.
*
* @group misc_funcs
* @since 3.5.0
*/
def input_file_block_start(): Column = Column.fn("input_file_block_start")
/**
* Calls a method with reflection.
*
* @group misc_funcs
* @since 3.5.0
*/
def reflect(cols: Column*): Column = Column.fn("reflect", cols: _*)
/**
* Calls a method with reflection.
*
* @group misc_funcs
* @since 3.5.0
*/
def java_method(cols: Column*): Column = Column.fn("java_method", cols: _*)
/**
* This is a special version of `reflect` that performs the same operation, but returns a NULL
* value instead of raising an error if the invoke method thrown exception.
*
* @group misc_funcs
* @since 4.0.0
*/
def try_reflect(cols: Column*): Column = Column.fn("try_reflect", cols: _*)
/**
* Returns the Spark version. The string contains 2 fields, the first being a release version
* and the second being a git revision.
*
* @group misc_funcs
* @since 3.5.0
*/
def version(): Column = Column.fn("version")
/**
* Return DDL-formatted type string for the data type of the input.
*
* @group misc_funcs
* @since 3.5.0
*/
def typeof(col: Column): Column = Column.fn("typeof", col)
/**
* Separates `col1`, ..., `colk` into `n` rows. Uses column names col0, col1, etc. by default
* unless specified otherwise.
*
* @group generator_funcs
* @since 3.5.0
*/
def stack(cols: Column*): Column = Column.fn("stack", cols: _*)
/**
* Returns a random value with independent and identically distributed (i.i.d.) uniformly
* distributed values in [0, 1).
*
* @group math_funcs
* @since 3.5.0
*/
def random(seed: Column): Column = Column.fn("random", seed)
/**
* Returns a random value with independent and identically distributed (i.i.d.) uniformly
* distributed values in [0, 1).
*
* @group math_funcs
* @since 3.5.0
*/
def random(): Column = random(lit(SparkClassUtils.random.nextLong))
/**
* Returns the bucket number for the given input column.
*
* @group misc_funcs
* @since 3.5.0
*/
def bitmap_bit_position(col: Column): Column =
Column.fn("bitmap_bit_position", col)
/**
* Returns the bit position for the given input column.
*
* @group misc_funcs
* @since 3.5.0
*/
def bitmap_bucket_number(col: Column): Column =
Column.fn("bitmap_bucket_number", col)
/**
* Returns a bitmap with the positions of the bits set from all the values from the input
* column. The input column will most likely be bitmap_bit_position().
*
* @group agg_funcs
* @since 3.5.0
*/
def bitmap_construct_agg(col: Column): Column =
Column.fn("bitmap_construct_agg", col)
/**
* Returns the number of set bits in the input bitmap.
*
* @group misc_funcs
* @since 3.5.0
*/
def bitmap_count(col: Column): Column = Column.fn("bitmap_count", col)
/**
* Returns a bitmap that is the bitwise OR of all of the bitmaps from the input column. The
* input column should be bitmaps created from bitmap_construct_agg().
*
* @group agg_funcs
* @since 3.5.0
*/
def bitmap_or_agg(col: Column): Column = Column.fn("bitmap_or_agg", col)
//////////////////////////////////////////////////////////////////////////////////////////////
// String functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the numeric value of the first character of the string column, and returns the
* result as an int column.
*
* @group string_funcs
* @since 1.5.0
*/
def ascii(e: Column): Column = Column.fn("ascii", e)
/**
* Computes the BASE64 encoding of a binary column and returns it as a string column. This is
* the reverse of unbase64.
*
* @group string_funcs
* @since 1.5.0
*/
def base64(e: Column): Column = Column.fn("base64", e)
/**
* Calculates the bit length for the specified string column.
*
* @group string_funcs
* @since 3.3.0
*/
def bit_length(e: Column): Column = Column.fn("bit_length", e)
/**
* Concatenates multiple input string columns together into a single string column, using the
* given separator.
*
* @note
* Input strings which are null are skipped.
*
* @group string_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def concat_ws(sep: String, exprs: Column*): Column =
Column.fn("concat_ws", lit(sep) +: exprs: _*)
/**
* Computes the first argument into a string from a binary using the provided character set (one
* of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16', 'UTF-32'). If either
* argument is null, the result will also be null.
*
* @group string_funcs
* @since 1.5.0
*/
def decode(value: Column, charset: String): Column =
Column.fn("decode", value, lit(charset))
/**
* Computes the first argument into a binary from a string using the provided character set (one
* of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16', 'UTF-32'). If either
* argument is null, the result will also be null.
*
* @group string_funcs
* @since 1.5.0
*/
def encode(value: Column, charset: String): Column =
Column.fn("encode", value, lit(charset))
/**
* Formats numeric column x to a format like '#,###,###.##', rounded to d decimal places with
* HALF_EVEN round mode, and returns the result as a string column.
*
* If d is 0, the result has no decimal point or fractional part. If d is less than 0, the
* result will be null.
*
* @group string_funcs
* @since 1.5.0
*/
def format_number(x: Column, d: Int): Column = Column.fn("format_number", x, lit(d))
/**
* Formats the arguments in printf-style and returns the result as a string column.
*
* @group string_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def format_string(format: String, arguments: Column*): Column =
Column.fn("format_string", lit(format) +: arguments: _*)
/**
* Returns a new string column by converting the first letter of each word to uppercase. Words
* are delimited by whitespace.
*
* For example, "hello world" will become "Hello World".
*
* @group string_funcs
* @since 1.5.0
*/
def initcap(e: Column): Column = Column.fn("initcap", e)
/**
* Locate the position of the first occurrence of substr column in the given string. Returns
* null if either of the arguments are null.
*
* @note
* The position is not zero based, but 1 based index. Returns 0 if substr could not be found
* in str.
*
* @group string_funcs
* @since 1.5.0
*/
def instr(str: Column, substring: String): Column = Column.fn("instr", str, lit(substring))
/**
* Computes the character length of a given string or number of bytes of a binary string. The
* length of character strings include the trailing spaces. The length of binary strings
* includes binary zeros.
*
* @group string_funcs
* @since 1.5.0
*/
def length(e: Column): Column = Column.fn("length", e)
/**
* Computes the character length of a given string or number of bytes of a binary string. The
* length of character strings include the trailing spaces. The length of binary strings
* includes binary zeros.
*
* @group string_funcs
* @since 3.5.0
*/
def len(e: Column): Column = Column.fn("len", e)
/**
* Converts a string column to lower case.
*
* @group string_funcs
* @since 1.3.0
*/
def lower(e: Column): Column = Column.fn("lower", e)
/**
* Computes the Levenshtein distance of the two given string columns if it's less than or equal
* to a given threshold.
* @return
* result distance, or -1
* @group string_funcs
* @since 3.5.0
*/
def levenshtein(l: Column, r: Column, threshold: Int): Column =
Column.fn("levenshtein", l, r, lit(threshold))
/**
* Computes the Levenshtein distance of the two given string columns.
* @group string_funcs
* @since 1.5.0
*/
def levenshtein(l: Column, r: Column): Column = Column.fn("levenshtein", l, r)
/**
* Locate the position of the first occurrence of substr.
*
* @note
* The position is not zero based, but 1 based index. Returns 0 if substr could not be found
* in str.
*
* @group string_funcs
* @since 1.5.0
*/
def locate(substr: String, str: Column): Column = Column.fn("locate", lit(substr), str)
/**
* Locate the position of the first occurrence of substr in a string column, after position pos.
*
* @note
* The position is not zero based, but 1 based index. returns 0 if substr could not be found
* in str.
*
* @group string_funcs
* @since 1.5.0
*/
def locate(substr: String, str: Column, pos: Int): Column =
Column.fn("locate", lit(substr), str, lit(pos))
/**
* Left-pad the string column with pad to a length of len. If the string column is longer than
* len, the return value is shortened to len characters.
*
* @group string_funcs
* @since 1.5.0
*/
def lpad(str: Column, len: Int, pad: String): Column =
Column.fn("lpad", str, lit(len), lit(pad))
/**
* Left-pad the binary column with pad to a byte length of len. If the binary column is longer
* than len, the return value is shortened to len bytes.
*
* @group string_funcs
* @since 3.3.0
*/
def lpad(str: Column, len: Int, pad: Array[Byte]): Column =
Column.fn("lpad", str, lit(len), lit(pad))
/**
* Trim the spaces from left end for the specified string value.
*
* @group string_funcs
* @since 1.5.0
*/
def ltrim(e: Column): Column = Column.fn("ltrim", e)
/**
* Trim the specified character string from left end for the specified string column.
* @group string_funcs
* @since 2.3.0
*/
def ltrim(e: Column, trimString: String): Column = Column.fn("ltrim", lit(trimString), e)
/**
* Calculates the byte length for the specified string column.
*
* @group string_funcs
* @since 3.3.0
*/
def octet_length(e: Column): Column = Column.fn("octet_length", e)
/**
* Marks a given column with specified collation.
*
* @group string_funcs
* @since 4.0.0
*/
def collate(e: Column, collation: String): Column = Column.fn("collate", e, lit(collation))
/**
* Returns the collation name of a given column.
*
* @group string_funcs
* @since 4.0.0
*/
def collation(e: Column): Column = Column.fn("collation", e)
/**
* Returns true if `str` matches `regexp`, or false otherwise.
*
* @group predicate_funcs
* @since 3.5.0
*/
def rlike(str: Column, regexp: Column): Column = Column.fn("rlike", str, regexp)
/**
* Returns true if `str` matches `regexp`, or false otherwise.
*
* @group predicate_funcs
* @since 3.5.0
*/
def regexp(str: Column, regexp: Column): Column = Column.fn("regexp", str, regexp)
/**
* Returns true if `str` matches `regexp`, or false otherwise.
*
* @group predicate_funcs
* @since 3.5.0
*/
def regexp_like(str: Column, regexp: Column): Column = Column.fn("regexp_like", str, regexp)
/**
* Returns a count of the number of times that the regular expression pattern `regexp` is
* matched in the string `str`.
*
* @group string_funcs
* @since 3.5.0
*/
def regexp_count(str: Column, regexp: Column): Column = Column.fn("regexp_count", str, regexp)
/**
* Extract a specific group matched by a Java regex, from the specified string column. If the
* regex did not match, or the specified group did not match, an empty string is returned. if
* the specified group index exceeds the group count of regex, an IllegalArgumentException will
* be thrown.
*
* @group string_funcs
* @since 1.5.0
*/
def regexp_extract(e: Column, exp: String, groupIdx: Int): Column =
Column.fn("regexp_extract", e, lit(exp), lit(groupIdx))
/**
* Extract all strings in the `str` that match the `regexp` expression and corresponding to the
* first regex group index.
*
* @group string_funcs
* @since 3.5.0
*/
def regexp_extract_all(str: Column, regexp: Column): Column =
Column.fn("regexp_extract_all", str, regexp)
/**
* Extract all strings in the `str` that match the `regexp` expression and corresponding to the
* regex group index.
*
* @group string_funcs
* @since 3.5.0
*/
def regexp_extract_all(str: Column, regexp: Column, idx: Column): Column =
Column.fn("regexp_extract_all", str, regexp, idx)
/**
* Replace all substrings of the specified string value that match regexp with rep.
*
* @group string_funcs
* @since 1.5.0
*/
def regexp_replace(e: Column, pattern: String, replacement: String): Column =
regexp_replace(e, lit(pattern), lit(replacement))
/**
* Replace all substrings of the specified string value that match regexp with rep.
*
* @group string_funcs
* @since 2.1.0
*/
def regexp_replace(e: Column, pattern: Column, replacement: Column): Column =
Column.fn("regexp_replace", e, pattern, replacement)
/**
* Returns the substring that matches the regular expression `regexp` within the string `str`.
* If the regular expression is not found, the result is null.
*
* @group string_funcs
* @since 3.5.0
*/
def regexp_substr(str: Column, regexp: Column): Column = Column.fn("regexp_substr", str, regexp)
/**
* Searches a string for a regular expression and returns an integer that indicates the
* beginning position of the matched substring. Positions are 1-based, not 0-based. If no match
* is found, returns 0.
*
* @group string_funcs
* @since 3.5.0
*/
def regexp_instr(str: Column, regexp: Column): Column = Column.fn("regexp_instr", str, regexp)
/**
* Searches a string for a regular expression and returns an integer that indicates the
* beginning position of the matched substring. Positions are 1-based, not 0-based. If no match
* is found, returns 0.
*
* @group string_funcs
* @since 3.5.0
*/
def regexp_instr(str: Column, regexp: Column, idx: Column): Column =
Column.fn("regexp_instr", str, regexp, idx)
/**
* Decodes a BASE64 encoded string column and returns it as a binary column. This is the reverse
* of base64.
*
* @group string_funcs
* @since 1.5.0
*/
def unbase64(e: Column): Column = Column.fn("unbase64", e)
/**
* Right-pad the string column with pad to a length of len. If the string column is longer than
* len, the return value is shortened to len characters.
*
* @group string_funcs
* @since 1.5.0
*/
def rpad(str: Column, len: Int, pad: String): Column =
Column.fn("rpad", str, lit(len), lit(pad))
/**
* Right-pad the binary column with pad to a byte length of len. If the binary column is longer
* than len, the return value is shortened to len bytes.
*
* @group string_funcs
* @since 3.3.0
*/
def rpad(str: Column, len: Int, pad: Array[Byte]): Column =
Column.fn("rpad", str, lit(len), lit(pad))
/**
* Repeats a string column n times, and returns it as a new string column.
*
* @group string_funcs
* @since 1.5.0
*/
def repeat(str: Column, n: Int): Column = Column.fn("repeat", str, lit(n))
/**
* Repeats a string column n times, and returns it as a new string column.
*
* @group string_funcs
* @since 4.0.0
*/
def repeat(str: Column, n: Column): Column = Column.fn("repeat", str, n)
/**
* Trim the spaces from right end for the specified string value.
*
* @group string_funcs
* @since 1.5.0
*/
def rtrim(e: Column): Column = Column.fn("rtrim", e)
/**
* Trim the specified character string from right end for the specified string column.
* @group string_funcs
* @since 2.3.0
*/
def rtrim(e: Column, trimString: String): Column = Column.fn("rtrim", lit(trimString), e)
/**
* Returns the soundex code for the specified expression.
*
* @group string_funcs
* @since 1.5.0
*/
def soundex(e: Column): Column = Column.fn("soundex", e)
/**
* Splits str around matches of the given pattern.
*
* @param str
* a string expression to split
* @param pattern
* a string representing a regular expression. The regex string should be a Java regular
* expression.
*
* @group string_funcs
* @since 1.5.0
*/
def split(str: Column, pattern: String): Column = Column.fn("split", str, lit(pattern))
/**
* Splits str around matches of the given pattern.
*
* @param str
* a string expression to split
* @param pattern
* a column of string representing a regular expression. The regex string should be a Java
* regular expression.
*
* @group string_funcs
* @since 4.0.0
*/
def split(str: Column, pattern: Column): Column = Column.fn("split", str, pattern)
/**
* Splits str around matches of the given pattern.
*
* @param str
* a string expression to split
* @param pattern
* a string representing a regular expression. The regex string should be a Java regular
* expression.
* @param limit
* an integer expression which controls the number of times the regex is applied.
* - limit greater than 0: The resulting array's length will not be more than limit, and the
* resulting array's last entry will contain all input beyond the last matched regex.
* - limit less than or equal to 0: `regex` will be applied as many times as possible, and
* the resulting array can be of any size.
*
* @group string_funcs
* @since 3.0.0
*/
def split(str: Column, pattern: String, limit: Int): Column =
Column.fn("split", str, lit(pattern), lit(limit))
/**
* Splits str around matches of the given pattern.
*
* @param str
* a string expression to split
* @param pattern
* a column of string representing a regular expression. The regex string should be a Java
* regular expression.
* @param limit
* a column of integer expression which controls the number of times the regex is applied.
* - limit greater than 0: The resulting array's length will not be more than limit,
* and the resulting array's last entry will contain all input beyond the last matched
* regex.
- limit less than or equal to 0: `regex` will be applied as many times as
* possible, and the resulting array can be of any size.
*
* @group string_funcs
* @since 4.0.0
*/
def split(str: Column, pattern: Column, limit: Column): Column =
Column.fn("split", str, pattern, limit)
/**
* Substring starts at `pos` and is of length `len` when str is String type or returns the slice
* of byte array that starts at `pos` in byte and is of length `len` when str is Binary type
*
* @note
* The position is not zero based, but 1 based index.
*
* @group string_funcs
* @since 1.5.0
*/
def substring(str: Column, pos: Int, len: Int): Column =
Column.fn("substring", str, lit(pos), lit(len))
/**
* Substring starts at `pos` and is of length `len` when str is String type or returns the slice
* of byte array that starts at `pos` in byte and is of length `len` when str is Binary type
*
* @note
* The position is not zero based, but 1 based index.
*
* @group string_funcs
* @since 4.0.0
*/
def substring(str: Column, pos: Column, len: Column): Column =
Column.fn("substring", str, pos, len)
/**
* Returns the substring from string str before count occurrences of the delimiter delim. If
* count is positive, everything the left of the final delimiter (counting from left) is
* returned. If count is negative, every to the right of the final delimiter (counting from the
* right) is returned. substring_index performs a case-sensitive match when searching for delim.
*
* @group string_funcs
*/
def substring_index(str: Column, delim: String, count: Int): Column =
Column.fn("substring_index", str, lit(delim), lit(count))
/**
* Overlay the specified portion of `src` with `replace`, starting from byte position `pos` of
* `src` and proceeding for `len` bytes.
*
* @group string_funcs
* @since 3.0.0
*/
def overlay(src: Column, replace: Column, pos: Column, len: Column): Column =
Column.fn("overlay", src, replace, pos, len)
/**
* Overlay the specified portion of `src` with `replace`, starting from byte position `pos` of
* `src`.
*
* @group string_funcs
* @since 3.0.0
*/
def overlay(src: Column, replace: Column, pos: Column): Column =
Column.fn("overlay", src, replace, pos)
/**
* Splits a string into arrays of sentences, where each sentence is an array of words.
* @group string_funcs
* @since 3.2.0
*/
def sentences(string: Column, language: Column, country: Column): Column =
Column.fn("sentences", string, language, country)
/**
* Splits a string into arrays of sentences, where each sentence is an array of words. The
* default `country`('') is used.
* @group string_funcs
* @since 4.0.0
*/
def sentences(string: Column, language: Column): Column =
Column.fn("sentences", string, language)
/**
* Splits a string into arrays of sentences, where each sentence is an array of words. The
* default locale is used.
* @group string_funcs
* @since 3.2.0
*/
def sentences(string: Column): Column = Column.fn("sentences", string)
/**
* Translate any character in the src by a character in replaceString. The characters in
* replaceString correspond to the characters in matchingString. The translate will happen when
* any character in the string matches the character in the `matchingString`.
*
* @group string_funcs
* @since 1.5.0
*/
def translate(src: Column, matchingString: String, replaceString: String): Column =
Column.fn("translate", src, lit(matchingString), lit(replaceString))
/**
* Trim the spaces from both ends for the specified string column.
*
* @group string_funcs
* @since 1.5.0
*/
def trim(e: Column): Column = Column.fn("trim", e)
/**
* Trim the specified character from both ends for the specified string column.
* @group string_funcs
* @since 2.3.0
*/
def trim(e: Column, trimString: String): Column = Column.fn("trim", lit(trimString), e)
/**
* Converts a string column to upper case.
*
* @group string_funcs
* @since 1.3.0
*/
def upper(e: Column): Column = Column.fn("upper", e)
/**
* Converts the input `e` to a binary value based on the supplied `format`. The `format` can be
* a case-insensitive string literal of "hex", "utf-8", "utf8", or "base64". By default, the
* binary format for conversion is "hex" if `format` is omitted. The function returns NULL if at
* least one of the input parameters is NULL.
*
* @group string_funcs
* @since 3.5.0
*/
def to_binary(e: Column, f: Column): Column = Column.fn("to_binary", e, f)
/**
* Converts the input `e` to a binary value based on the default format "hex". The function
* returns NULL if at least one of the input parameters is NULL.
*
* @group string_funcs
* @since 3.5.0
*/
def to_binary(e: Column): Column = Column.fn("to_binary", e)
// scalastyle:off line.size.limit
/**
* Convert `e` to a string based on the `format`. Throws an exception if the conversion fails.
* The format can consist of the following characters, case insensitive: '0' or '9': Specifies
* an expected digit between 0 and 9. A sequence of 0 or 9 in the format string matches a
* sequence of digits in the input value, generating a result string of the same length as the
* corresponding sequence in the format string. The result string is left-padded with zeros if
* the 0/9 sequence comprises more digits than the matching part of the decimal value, starts
* with 0, and is before the decimal point. Otherwise, it is padded with spaces. '.' or 'D':
* Specifies the position of the decimal point (optional, only allowed once). ',' or 'G':
* Specifies the position of the grouping (thousands) separator (,). There must be a 0 or 9 to
* the left and right of each grouping separator. '$': Specifies the location of the $ currency
* sign. This character may only be specified once. 'S' or 'MI': Specifies the position of a '-'
* or '+' sign (optional, only allowed once at the beginning or end of the format string). Note
* that 'S' prints '+' for positive values but 'MI' prints a space. 'PR': Only allowed at the
* end of the format string; specifies that the result string will be wrapped by angle brackets
* if the input value is negative.
*
* If `e` is a datetime, `format` shall be a valid datetime pattern, see Datetime
* Patterns. If `e` is a binary, it is converted to a string in one of the formats:
* 'base64': a base 64 string. 'hex': a string in the hexadecimal format. 'utf-8': the input
* binary is decoded to UTF-8 string.
*
* @group string_funcs
* @since 3.5.0
*/
// scalastyle:on line.size.limit
def to_char(e: Column, format: Column): Column = Column.fn("to_char", e, format)
// scalastyle:off line.size.limit
/**
* Convert `e` to a string based on the `format`. Throws an exception if the conversion fails.
* The format can consist of the following characters, case insensitive: '0' or '9': Specifies
* an expected digit between 0 and 9. A sequence of 0 or 9 in the format string matches a
* sequence of digits in the input value, generating a result string of the same length as the
* corresponding sequence in the format string. The result string is left-padded with zeros if
* the 0/9 sequence comprises more digits than the matching part of the decimal value, starts
* with 0, and is before the decimal point. Otherwise, it is padded with spaces. '.' or 'D':
* Specifies the position of the decimal point (optional, only allowed once). ',' or 'G':
* Specifies the position of the grouping (thousands) separator (,). There must be a 0 or 9 to
* the left and right of each grouping separator. '$': Specifies the location of the $ currency
* sign. This character may only be specified once. 'S' or 'MI': Specifies the position of a '-'
* or '+' sign (optional, only allowed once at the beginning or end of the format string). Note
* that 'S' prints '+' for positive values but 'MI' prints a space. 'PR': Only allowed at the
* end of the format string; specifies that the result string will be wrapped by angle brackets
* if the input value is negative.
*
* If `e` is a datetime, `format` shall be a valid datetime pattern, see Datetime
* Patterns. If `e` is a binary, it is converted to a string in one of the formats:
* 'base64': a base 64 string. 'hex': a string in the hexadecimal format. 'utf-8': the input
* binary is decoded to UTF-8 string.
*
* @group string_funcs
* @since 3.5.0
*/
// scalastyle:on line.size.limit
def to_varchar(e: Column, format: Column): Column = Column.fn("to_varchar", e, format)
/**
* Convert string 'e' to a number based on the string format 'format'. Throws an exception if
* the conversion fails. The format can consist of the following characters, case insensitive:
* '0' or '9': Specifies an expected digit between 0 and 9. A sequence of 0 or 9 in the format
* string matches a sequence of digits in the input string. If the 0/9 sequence starts with 0
* and is before the decimal point, it can only match a digit sequence of the same size.
* Otherwise, if the sequence starts with 9 or is after the decimal point, it can match a digit
* sequence that has the same or smaller size. '.' or 'D': Specifies the position of the decimal
* point (optional, only allowed once). ',' or 'G': Specifies the position of the grouping
* (thousands) separator (,). There must be a 0 or 9 to the left and right of each grouping
* separator. 'expr' must match the grouping separator relevant for the size of the number. '$':
* Specifies the location of the $ currency sign. This character may only be specified once. 'S'
* or 'MI': Specifies the position of a '-' or '+' sign (optional, only allowed once at the
* beginning or end of the format string). Note that 'S' allows '-' but 'MI' does not. 'PR':
* Only allowed at the end of the format string; specifies that 'expr' indicates a negative
* number with wrapping angled brackets.
*
* @group string_funcs
* @since 3.5.0
*/
def to_number(e: Column, format: Column): Column = Column.fn("to_number", e, format)
/**
* Replaces all occurrences of `search` with `replace`.
*
* @param src
* A column of string to be replaced
* @param search
* A column of string, If `search` is not found in `str`, `str` is returned unchanged.
* @param replace
* A column of string, If `replace` is not specified or is an empty string, nothing replaces
* the string that is removed from `str`.
*
* @group string_funcs
* @since 3.5.0
*/
def replace(src: Column, search: Column, replace: Column): Column =
Column.fn("replace", src, search, replace)
/**
* Replaces all occurrences of `search` with `replace`.
*
* @param src
* A column of string to be replaced
* @param search
* A column of string, If `search` is not found in `src`, `src` is returned unchanged.
*
* @group string_funcs
* @since 3.5.0
*/
def replace(src: Column, search: Column): Column = Column.fn("replace", src, search)
/**
* Splits `str` by delimiter and return requested part of the split (1-based). If any input is
* null, returns null. if `partNum` is out of range of split parts, returns empty string. If
* `partNum` is 0, throws an error. If `partNum` is negative, the parts are counted backward
* from the end of the string. If the `delimiter` is an empty string, the `str` is not split.
*
* @group string_funcs
* @since 3.5.0
*/
def split_part(str: Column, delimiter: Column, partNum: Column): Column =
Column.fn("split_part", str, delimiter, partNum)
/**
* Returns the substring of `str` that starts at `pos` and is of length `len`, or the slice of
* byte array that starts at `pos` and is of length `len`.
*
* @group string_funcs
* @since 3.5.0
*/
def substr(str: Column, pos: Column, len: Column): Column =
Column.fn("substr", str, pos, len)
/**
* Returns the substring of `str` that starts at `pos`, or the slice of byte array that starts
* at `pos`.
*
* @group string_funcs
* @since 3.5.0
*/
def substr(str: Column, pos: Column): Column = Column.fn("substr", str, pos)
/**
* Extracts a part from a URL.
*
* @group url_funcs
* @since 3.5.0
*/
def parse_url(url: Column, partToExtract: Column, key: Column): Column =
Column.fn("parse_url", url, partToExtract, key)
/**
* Extracts a part from a URL.
*
* @group url_funcs
* @since 3.5.0
*/
def parse_url(url: Column, partToExtract: Column): Column =
Column.fn("parse_url", url, partToExtract)
/**
* Formats the arguments in printf-style and returns the result as a string column.
*
* @group string_funcs
* @since 3.5.0
*/
def printf(format: Column, arguments: Column*): Column =
Column.fn("printf", (format +: arguments): _*)
/**
* Decodes a `str` in 'application/x-www-form-urlencoded' format using a specific encoding
* scheme.
*
* @group url_funcs
* @since 3.5.0
*/
def url_decode(str: Column): Column = Column.fn("url_decode", str)
/**
* This is a special version of `url_decode` that performs the same operation, but returns a
* NULL value instead of raising an error if the decoding cannot be performed.
*
* @group url_funcs
* @since 4.0.0
*/
def try_url_decode(str: Column): Column = Column.fn("try_url_decode", str)
/**
* Translates a string into 'application/x-www-form-urlencoded' format using a specific encoding
* scheme.
*
* @group url_funcs
* @since 3.5.0
*/
def url_encode(str: Column): Column = Column.fn("url_encode", str)
/**
* Returns the position of the first occurrence of `substr` in `str` after position `start`. The
* given `start` and return value are 1-based.
*
* @group string_funcs
* @since 3.5.0
*/
def position(substr: Column, str: Column, start: Column): Column =
Column.fn("position", substr, str, start)
/**
* Returns the position of the first occurrence of `substr` in `str` after position `1`. The
* return value are 1-based.
*
* @group string_funcs
* @since 3.5.0
*/
def position(substr: Column, str: Column): Column =
Column.fn("position", substr, str)
/**
* Returns a boolean. The value is True if str ends with suffix. Returns NULL if either input
* expression is NULL. Otherwise, returns False. Both str or suffix must be of STRING or BINARY
* type.
*
* @group string_funcs
* @since 3.5.0
*/
def endswith(str: Column, suffix: Column): Column =
Column.fn("endswith", str, suffix)
/**
* Returns a boolean. The value is True if str starts with prefix. Returns NULL if either input
* expression is NULL. Otherwise, returns False. Both str or prefix must be of STRING or BINARY
* type.
*
* @group string_funcs
* @since 3.5.0
*/
def startswith(str: Column, prefix: Column): Column =
Column.fn("startswith", str, prefix)
/**
* Returns the ASCII character having the binary equivalent to `n`. If n is larger than 256 the
* result is equivalent to char(n % 256)
*
* @group string_funcs
* @since 3.5.0
*/
def char(n: Column): Column = Column.fn("char", n)
/**
* Removes the leading and trailing space characters from `str`.
*
* @group string_funcs
* @since 3.5.0
*/
def btrim(str: Column): Column = Column.fn("btrim", str)
/**
* Remove the leading and trailing `trim` characters from `str`.
*
* @group string_funcs
* @since 3.5.0
*/
def btrim(str: Column, trim: Column): Column = Column.fn("btrim", str, trim)
/**
* This is a special version of `to_binary` that performs the same operation, but returns a NULL
* value instead of raising an error if the conversion cannot be performed.
*
* @group string_funcs
* @since 3.5.0
*/
def try_to_binary(e: Column, f: Column): Column = Column.fn("try_to_binary", e, f)
/**
* This is a special version of `to_binary` that performs the same operation, but returns a NULL
* value instead of raising an error if the conversion cannot be performed.
*
* @group string_funcs
* @since 3.5.0
*/
def try_to_binary(e: Column): Column = Column.fn("try_to_binary", e)
/**
* Convert string `e` to a number based on the string format `format`. Returns NULL if the
* string `e` does not match the expected format. The format follows the same semantics as the
* to_number function.
*
* @group string_funcs
* @since 3.5.0
*/
def try_to_number(e: Column, format: Column): Column = Column.fn("try_to_number", e, format)
/**
* Returns the character length of string data or number of bytes of binary data. The length of
* string data includes the trailing spaces. The length of binary data includes binary zeros.
*
* @group string_funcs
* @since 3.5.0
*/
def char_length(str: Column): Column = Column.fn("char_length", str)
/**
* Returns the character length of string data or number of bytes of binary data. The length of
* string data includes the trailing spaces. The length of binary data includes binary zeros.
*
* @group string_funcs
* @since 3.5.0
*/
def character_length(str: Column): Column = Column.fn("character_length", str)
/**
* Returns the ASCII character having the binary equivalent to `n`. If n is larger than 256 the
* result is equivalent to chr(n % 256)
*
* @group string_funcs
* @since 3.5.0
*/
def chr(n: Column): Column = Column.fn("chr", n)
/**
* Returns a boolean. The value is True if right is found inside left. Returns NULL if either
* input expression is NULL. Otherwise, returns False. Both left or right must be of STRING or
* BINARY type.
*
* @group string_funcs
* @since 3.5.0
*/
def contains(left: Column, right: Column): Column = Column.fn("contains", left, right)
/**
* Returns the `n`-th input, e.g., returns `input2` when `n` is 2. The function returns NULL if
* the index exceeds the length of the array and `spark.sql.ansi.enabled` is set to false. If
* `spark.sql.ansi.enabled` is set to true, it throws ArrayIndexOutOfBoundsException for invalid
* indices.
*
* @group string_funcs
* @since 3.5.0
*/
@scala.annotation.varargs
def elt(inputs: Column*): Column = Column.fn("elt", inputs: _*)
/**
* Returns the index (1-based) of the given string (`str`) in the comma-delimited list
* (`strArray`). Returns 0, if the string was not found or if the given string (`str`) contains
* a comma.
*
* @group string_funcs
* @since 3.5.0
*/
def find_in_set(str: Column, strArray: Column): Column = Column.fn("find_in_set", str, strArray)
/**
* Returns true if str matches `pattern` with `escapeChar`, null if any arguments are null,
* false otherwise.
*
* @group predicate_funcs
* @since 3.5.0
*/
def like(str: Column, pattern: Column, escapeChar: Column): Column =
Column.fn("like", str, pattern, escapeChar)
/**
* Returns true if str matches `pattern` with `escapeChar`('\'), null if any arguments are null,
* false otherwise.
*
* @group predicate_funcs
* @since 3.5.0
*/
def like(str: Column, pattern: Column): Column = Column.fn("like", str, pattern)
/**
* Returns true if str matches `pattern` with `escapeChar` case-insensitively, null if any
* arguments are null, false otherwise.
*
* @group predicate_funcs
* @since 3.5.0
*/
def ilike(str: Column, pattern: Column, escapeChar: Column): Column =
Column.fn("ilike", str, pattern, escapeChar)
/**
* Returns true if str matches `pattern` with `escapeChar`('\') case-insensitively, null if any
* arguments are null, false otherwise.
*
* @group predicate_funcs
* @since 3.5.0
*/
def ilike(str: Column, pattern: Column): Column = Column.fn("ilike", str, pattern)
/**
* Returns `str` with all characters changed to lowercase.
*
* @group string_funcs
* @since 3.5.0
*/
def lcase(str: Column): Column = Column.fn("lcase", str)
/**
* Returns `str` with all characters changed to uppercase.
*
* @group string_funcs
* @since 3.5.0
*/
def ucase(str: Column): Column = Column.fn("ucase", str)
/**
* Returns the leftmost `len`(`len` can be string type) characters from the string `str`, if
* `len` is less or equal than 0 the result is an empty string.
*
* @group string_funcs
* @since 3.5.0
*/
def left(str: Column, len: Column): Column = Column.fn("left", str, len)
/**
* Returns the rightmost `len`(`len` can be string type) characters from the string `str`, if
* `len` is less or equal than 0 the result is an empty string.
*
* @group string_funcs
* @since 3.5.0
*/
def right(str: Column, len: Column): Column = Column.fn("right", str, len)
//////////////////////////////////////////////////////////////////////////////////////////////
// DateTime functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns the date that is `numMonths` after `startDate`.
*
* @param startDate
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param numMonths
* The number of months to add to `startDate`, can be negative to subtract months
* @return
* A date, or null if `startDate` was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def add_months(startDate: Column, numMonths: Int): Column =
add_months(startDate, lit(numMonths))
/**
* Returns the date that is `numMonths` after `startDate`.
*
* @param startDate
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param numMonths
* A column of the number of months to add to `startDate`, can be negative to subtract months
* @return
* A date, or null if `startDate` was a string that could not be cast to a date
* @group datetime_funcs
* @since 3.0.0
*/
def add_months(startDate: Column, numMonths: Column): Column =
Column.fn("add_months", startDate, numMonths)
/**
* Returns the current date at the start of query evaluation as a date column. All calls of
* current_date within the same query return the same value.
*
* @group datetime_funcs
* @since 3.5.0
*/
def curdate(): Column = Column.fn("curdate")
/**
* Returns the current date at the start of query evaluation as a date column. All calls of
* current_date within the same query return the same value.
*
* @group datetime_funcs
* @since 1.5.0
*/
def current_date(): Column = Column.fn("current_date")
/**
* Returns the current session local timezone.
*
* @group datetime_funcs
* @since 3.5.0
*/
def current_timezone(): Column = Column.fn("current_timezone")
/**
* Returns the current timestamp at the start of query evaluation as a timestamp column. All
* calls of current_timestamp within the same query return the same value.
*
* @group datetime_funcs
* @since 1.5.0
*/
def current_timestamp(): Column = Column.fn("current_timestamp")
/**
* Returns the current timestamp at the start of query evaluation.
*
* @group datetime_funcs
* @since 3.5.0
*/
def now(): Column = Column.fn("now")
/**
* Returns the current timestamp without time zone at the start of query evaluation as a
* timestamp without time zone column. All calls of localtimestamp within the same query return
* the same value.
*
* @group datetime_funcs
* @since 3.3.0
*/
def localtimestamp(): Column = Column.fn("localtimestamp")
/**
* Converts a date/timestamp/string to a value of string in the format specified by the date
* format given by the second argument.
*
* See Datetime
* Patterns for valid date and time format patterns
*
* @param dateExpr
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param format
* A pattern `dd.MM.yyyy` would return a string like `18.03.1993`
* @return
* A string, or null if `dateExpr` was a string that could not be cast to a timestamp
* @note
* Use specialized functions like [[year]] whenever possible as they benefit from a
* specialized implementation.
* @throws IllegalArgumentException
* if the `format` pattern is invalid
* @group datetime_funcs
* @since 1.5.0
*/
def date_format(dateExpr: Column, format: String): Column =
Column.fn("date_format", dateExpr, lit(format))
/**
* Returns the date that is `days` days after `start`
*
* @param start
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param days
* The number of days to add to `start`, can be negative to subtract days
* @return
* A date, or null if `start` was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def date_add(start: Column, days: Int): Column = date_add(start, lit(days))
/**
* Returns the date that is `days` days after `start`
*
* @param start
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param days
* A column of the number of days to add to `start`, can be negative to subtract days
* @return
* A date, or null if `start` was a string that could not be cast to a date
* @group datetime_funcs
* @since 3.0.0
*/
def date_add(start: Column, days: Column): Column = Column.fn("date_add", start, days)
/**
* Returns the date that is `days` days after `start`
*
* @param start
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param days
* A column of the number of days to add to `start`, can be negative to subtract days
* @return
* A date, or null if `start` was a string that could not be cast to a date
* @group datetime_funcs
* @since 3.5.0
*/
def dateadd(start: Column, days: Column): Column = Column.fn("dateadd", start, days)
/**
* Returns the date that is `days` days before `start`
*
* @param start
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param days
* The number of days to subtract from `start`, can be negative to add days
* @return
* A date, or null if `start` was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def date_sub(start: Column, days: Int): Column = date_sub(start, lit(days))
/**
* Returns the date that is `days` days before `start`
*
* @param start
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param days
* A column of the number of days to subtract from `start`, can be negative to add days
* @return
* A date, or null if `start` was a string that could not be cast to a date
* @group datetime_funcs
* @since 3.0.0
*/
def date_sub(start: Column, days: Column): Column =
Column.fn("date_sub", start, days)
/**
* Returns the number of days from `start` to `end`.
*
* Only considers the date part of the input. For example:
* {{{
* dateddiff("2018-01-10 00:00:00", "2018-01-09 23:59:59")
* // returns 1
* }}}
*
* @param end
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param start
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return
* An integer, or null if either `end` or `start` were strings that could not be cast to a
* date. Negative if `end` is before `start`
* @group datetime_funcs
* @since 1.5.0
*/
def datediff(end: Column, start: Column): Column = Column.fn("datediff", end, start)
/**
* Returns the number of days from `start` to `end`.
*
* Only considers the date part of the input. For example:
* {{{
* dateddiff("2018-01-10 00:00:00", "2018-01-09 23:59:59")
* // returns 1
* }}}
*
* @param end
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param start
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return
* An integer, or null if either `end` or `start` were strings that could not be cast to a
* date. Negative if `end` is before `start`
* @group datetime_funcs
* @since 3.5.0
*/
def date_diff(end: Column, start: Column): Column = Column.fn("date_diff", end, start)
/**
* Create date from the number of `days` since 1970-01-01.
*
* @group datetime_funcs
* @since 3.5.0
*/
def date_from_unix_date(days: Column): Column = Column.fn("date_from_unix_date", days)
/**
* Extracts the year as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def year(e: Column): Column = Column.fn("year", e)
/**
* Extracts the quarter as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def quarter(e: Column): Column = Column.fn("quarter", e)
/**
* Extracts the month as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def month(e: Column): Column = Column.fn("month", e)
/**
* Extracts the day of the week as an integer from a given date/timestamp/string. Ranges from 1
* for a Sunday through to 7 for a Saturday
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 2.3.0
*/
def dayofweek(e: Column): Column = Column.fn("dayofweek", e)
/**
* Extracts the day of the month as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def dayofmonth(e: Column): Column = Column.fn("dayofmonth", e)
/**
* Extracts the day of the month as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 3.5.0
*/
def day(e: Column): Column = Column.fn("day", e)
/**
* Extracts the day of the year as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def dayofyear(e: Column): Column = Column.fn("dayofyear", e)
/**
* Extracts the hours as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def hour(e: Column): Column = Column.fn("hour", e)
/**
* Extracts a part of the date/timestamp or interval source.
*
* @param field
* selects which part of the source should be extracted.
* @param source
* a date/timestamp or interval column from where `field` should be extracted.
* @return
* a part of the date/timestamp or interval source
* @group datetime_funcs
* @since 3.5.0
*/
def extract(field: Column, source: Column): Column = {
Column.fn("extract", field, source)
}
/**
* Extracts a part of the date/timestamp or interval source.
*
* @param field
* selects which part of the source should be extracted, and supported string values are as
* same as the fields of the equivalent function `extract`.
* @param source
* a date/timestamp or interval column from where `field` should be extracted.
* @return
* a part of the date/timestamp or interval source
* @group datetime_funcs
* @since 3.5.0
*/
def date_part(field: Column, source: Column): Column = {
Column.fn("date_part", field, source)
}
/**
* Extracts a part of the date/timestamp or interval source.
*
* @param field
* selects which part of the source should be extracted, and supported string values are as
* same as the fields of the equivalent function `EXTRACT`.
* @param source
* a date/timestamp or interval column from where `field` should be extracted.
* @return
* a part of the date/timestamp or interval source
* @group datetime_funcs
* @since 3.5.0
*/
def datepart(field: Column, source: Column): Column = {
Column.fn("datepart", field, source)
}
/**
* Returns the last day of the month which the given date belongs to. For example, input
* "2015-07-27" returns "2015-07-31" since July 31 is the last day of the month in July 2015.
*
* @param e
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return
* A date, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def last_day(e: Column): Column = Column.fn("last_day", e)
/**
* Extracts the minutes as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def minute(e: Column): Column = Column.fn("minute", e)
/**
* Returns the day of the week for date/timestamp (0 = Monday, 1 = Tuesday, ..., 6 = Sunday).
*
* @group datetime_funcs
* @since 3.5.0
*/
def weekday(e: Column): Column = Column.fn("weekday", e)
/**
* @return
* A date created from year, month and day fields.
* @group datetime_funcs
* @since 3.3.0
*/
def make_date(year: Column, month: Column, day: Column): Column =
Column.fn("make_date", year, month, day)
/**
* Returns number of months between dates `start` and `end`.
*
* A whole number is returned if both inputs have the same day of month or both are the last day
* of their respective months. Otherwise, the difference is calculated assuming 31 days per
* month.
*
* For example:
* {{{
* months_between("2017-11-14", "2017-07-14") // returns 4.0
* months_between("2017-01-01", "2017-01-10") // returns 0.29032258
* months_between("2017-06-01", "2017-06-16 12:00:00") // returns -0.5
* }}}
*
* @param end
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param start
* A date, timestamp or string. If a string, the data must be in a format that can cast to a
* timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return
* A double, or null if either `end` or `start` were strings that could not be cast to a
* timestamp. Negative if `end` is before `start`
* @group datetime_funcs
* @since 1.5.0
*/
def months_between(end: Column, start: Column): Column =
Column.fn("months_between", end, start)
/**
* Returns number of months between dates `end` and `start`. If `roundOff` is set to true, the
* result is rounded off to 8 digits; it is not rounded otherwise.
* @group datetime_funcs
* @since 2.4.0
*/
def months_between(end: Column, start: Column, roundOff: Boolean): Column =
Column.fn("months_between", end, start, lit(roundOff))
/**
* Returns the first date which is later than the value of the `date` column that is on the
* specified day of the week.
*
* For example, `next_day('2015-07-27', "Sunday")` returns 2015-08-02 because that is the first
* Sunday after 2015-07-27.
*
* @param date
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param dayOfWeek
* Case insensitive, and accepts: "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
* @return
* A date, or null if `date` was a string that could not be cast to a date or if `dayOfWeek`
* was an invalid value
* @group datetime_funcs
* @since 1.5.0
*/
def next_day(date: Column, dayOfWeek: String): Column = next_day(date, lit(dayOfWeek))
/**
* Returns the first date which is later than the value of the `date` column that is on the
* specified day of the week.
*
* For example, `next_day('2015-07-27', "Sunday")` returns 2015-08-02 because that is the first
* Sunday after 2015-07-27.
*
* @param date
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param dayOfWeek
* A column of the day of week. Case insensitive, and accepts: "Mon", "Tue", "Wed", "Thu",
* "Fri", "Sat", "Sun"
* @return
* A date, or null if `date` was a string that could not be cast to a date or if `dayOfWeek`
* was an invalid value
* @group datetime_funcs
* @since 3.2.0
*/
def next_day(date: Column, dayOfWeek: Column): Column =
Column.fn("next_day", date, dayOfWeek)
/**
* Extracts the seconds as an integer from a given date/timestamp/string.
* @return
* An integer, or null if the input was a string that could not be cast to a timestamp
* @group datetime_funcs
* @since 1.5.0
*/
def second(e: Column): Column = Column.fn("second", e)
/**
* Extracts the week number as an integer from a given date/timestamp/string.
*
* A week is considered to start on a Monday and week 1 is the first week with more than 3 days,
* as defined by ISO 8601
*
* @return
* An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def weekofyear(e: Column): Column = Column.fn("weekofyear", e)
/**
* Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string
* representing the timestamp of that moment in the current system time zone in the yyyy-MM-dd
* HH:mm:ss format.
*
* @param ut
* A number of a type that is castable to a long, such as string or integer. Can be negative
* for timestamps before the unix epoch
* @return
* A string, or null if the input was a string that could not be cast to a long
* @group datetime_funcs
* @since 1.5.0
*/
def from_unixtime(ut: Column): Column = Column.fn("from_unixtime", ut)
/**
* Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string
* representing the timestamp of that moment in the current system time zone in the given
* format.
*
* See Datetime
* Patterns for valid date and time format patterns
*
* @param ut
* A number of a type that is castable to a long, such as string or integer. Can be negative
* for timestamps before the unix epoch
* @param f
* A date time pattern that the input will be formatted to
* @return
* A string, or null if `ut` was a string that could not be cast to a long or `f` was an
* invalid date time pattern
* @group datetime_funcs
* @since 1.5.0
*/
def from_unixtime(ut: Column, f: String): Column =
Column.fn("from_unixtime", ut, lit(f))
/**
* Returns the current Unix timestamp (in seconds) as a long.
*
* @note
* All calls of `unix_timestamp` within the same query return the same value (i.e. the current
* timestamp is calculated at the start of query evaluation).
*
* @group datetime_funcs
* @since 1.5.0
*/
def unix_timestamp(): Column = unix_timestamp(current_timestamp())
/**
* Converts time string in format yyyy-MM-dd HH:mm:ss to Unix timestamp (in seconds), using the
* default timezone and the default locale.
*
* @param s
* A date, timestamp or string. If a string, the data must be in the `yyyy-MM-dd HH:mm:ss`
* format
* @return
* A long, or null if the input was a string not of the correct format
* @group datetime_funcs
* @since 1.5.0
*/
def unix_timestamp(s: Column): Column = Column.fn("unix_timestamp", s)
/**
* Converts time string with given pattern to Unix timestamp (in seconds).
*
* See Datetime
* Patterns for valid date and time format patterns
*
* @param s
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param p
* A date time pattern detailing the format of `s` when `s` is a string
* @return
* A long, or null if `s` was a string that could not be cast to a date or `p` was an invalid
* format
* @group datetime_funcs
* @since 1.5.0
*/
def unix_timestamp(s: Column, p: String): Column =
Column.fn("unix_timestamp", s, lit(p))
/**
* Converts to a timestamp by casting rules to `TimestampType`.
*
* @param s
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return
* A timestamp, or null if the input was a string that could not be cast to a timestamp
* @group datetime_funcs
* @since 2.2.0
*/
def to_timestamp(s: Column): Column = Column.fn("to_timestamp", s)
/**
* Converts time string with the given pattern to timestamp.
*
* See Datetime
* Patterns for valid date and time format patterns
*
* @param s
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param fmt
* A date time pattern detailing the format of `s` when `s` is a string
* @return
* A timestamp, or null if `s` was a string that could not be cast to a timestamp or `fmt` was
* an invalid format
* @group datetime_funcs
* @since 2.2.0
*/
def to_timestamp(s: Column, fmt: String): Column = Column.fn("to_timestamp", s, lit(fmt))
/**
* Parses the `s` with the `format` to a timestamp. The function always returns null on an
* invalid input with`/`without ANSI SQL mode enabled. The result data type is consistent with
* the value of configuration `spark.sql.timestampType`.
*
* @group datetime_funcs
* @since 3.5.0
*/
def try_to_timestamp(s: Column, format: Column): Column =
Column.fn("try_to_timestamp", s, format)
/**
* Parses the `s` to a timestamp. The function always returns null on an invalid input
* with`/`without ANSI SQL mode enabled. It follows casting rules to a timestamp. The result
* data type is consistent with the value of configuration `spark.sql.timestampType`.
*
* @group datetime_funcs
* @since 3.5.0
*/
def try_to_timestamp(s: Column): Column = Column.fn("try_to_timestamp", s)
/**
* Converts the column into `DateType` by casting rules to `DateType`.
*
* @group datetime_funcs
* @since 1.5.0
*/
def to_date(e: Column): Column = Column.fn("to_date", e)
/**
* Converts the column into a `DateType` with a specified format
*
* See Datetime
* Patterns for valid date and time format patterns
*
* @param e
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param fmt
* A date time pattern detailing the format of `e` when `e`is a string
* @return
* A date, or null if `e` was a string that could not be cast to a date or `fmt` was an
* invalid format
* @group datetime_funcs
* @since 2.2.0
*/
def to_date(e: Column, fmt: String): Column = Column.fn("to_date", e, lit(fmt))
/**
* Returns the number of days since 1970-01-01.
*
* @group datetime_funcs
* @since 3.5.0
*/
def unix_date(e: Column): Column = Column.fn("unix_date", e)
/**
* Returns the number of microseconds since 1970-01-01 00:00:00 UTC.
*
* @group datetime_funcs
* @since 3.5.0
*/
def unix_micros(e: Column): Column = Column.fn("unix_micros", e)
/**
* Returns the number of milliseconds since 1970-01-01 00:00:00 UTC. Truncates higher levels of
* precision.
*
* @group datetime_funcs
* @since 3.5.0
*/
def unix_millis(e: Column): Column = Column.fn("unix_millis", e)
/**
* Returns the number of seconds since 1970-01-01 00:00:00 UTC. Truncates higher levels of
* precision.
*
* @group datetime_funcs
* @since 3.5.0
*/
def unix_seconds(e: Column): Column = Column.fn("unix_seconds", e)
/**
* Returns date truncated to the unit specified by the format.
*
* For example, `trunc("2018-11-19 12:01:19", "year")` returns 2018-01-01
*
* @param date
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param format:
* 'year', 'yyyy', 'yy' to truncate by year, or 'month', 'mon', 'mm' to truncate by month
* Other options are: 'week', 'quarter'
*
* @return
* A date, or null if `date` was a string that could not be cast to a date or `format` was an
* invalid value
* @group datetime_funcs
* @since 1.5.0
*/
def trunc(date: Column, format: String): Column = Column.fn("trunc", date, lit(format))
/**
* Returns timestamp truncated to the unit specified by the format.
*
* For example, `date_trunc("year", "2018-11-19 12:01:19")` returns 2018-01-01 00:00:00
*
* @param format:
* 'year', 'yyyy', 'yy' to truncate by year, 'month', 'mon', 'mm' to truncate by month, 'day',
* 'dd' to truncate by day, Other options are: 'microsecond', 'millisecond', 'second',
* 'minute', 'hour', 'week', 'quarter'
* @param timestamp
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return
* A timestamp, or null if `timestamp` was a string that could not be cast to a timestamp or
* `format` was an invalid value
* @group datetime_funcs
* @since 2.3.0
*/
def date_trunc(format: String, timestamp: Column): Column =
Column.fn("date_trunc", lit(format), timestamp)
/**
* Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in UTC, and renders
* that time as a timestamp in the given time zone. For example, 'GMT+1' would yield '2017-07-14
* 03:40:00.0'.
*
* @param ts
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param tz
* A string detailing the time zone ID that the input should be adjusted to. It should be in
* the format of either region-based zone IDs or zone offsets. Region IDs must have the form
* 'area/city', such as 'America/Los_Angeles'. Zone offsets must be in the format
* '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are supported as aliases
* of '+00:00'. Other short names are not recommended to use because they can be ambiguous.
* @return
* A timestamp, or null if `ts` was a string that could not be cast to a timestamp or `tz` was
* an invalid value
* @group datetime_funcs
* @since 1.5.0
*/
def from_utc_timestamp(ts: Column, tz: String): Column = from_utc_timestamp(ts, lit(tz))
/**
* Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in UTC, and renders
* that time as a timestamp in the given time zone. For example, 'GMT+1' would yield '2017-07-14
* 03:40:00.0'.
* @group datetime_funcs
* @since 2.4.0
*/
def from_utc_timestamp(ts: Column, tz: Column): Column =
Column.fn("from_utc_timestamp", ts, tz)
/**
* Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in the given time
* zone, and renders that time as a timestamp in UTC. For example, 'GMT+1' would yield
* '2017-07-14 01:40:00.0'.
*
* @param ts
* A date, timestamp or string. If a string, the data must be in a format that can be cast to
* a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param tz
* A string detailing the time zone ID that the input should be adjusted to. It should be in
* the format of either region-based zone IDs or zone offsets. Region IDs must have the form
* 'area/city', such as 'America/Los_Angeles'. Zone offsets must be in the format
* '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are supported as aliases
* of '+00:00'. Other short names are not recommended to use because they can be ambiguous.
* @return
* A timestamp, or null if `ts` was a string that could not be cast to a timestamp or `tz` was
* an invalid value
* @group datetime_funcs
* @since 1.5.0
*/
def to_utc_timestamp(ts: Column, tz: String): Column = to_utc_timestamp(ts, lit(tz))
/**
* Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in the given time
* zone, and renders that time as a timestamp in UTC. For example, 'GMT+1' would yield
* '2017-07-14 01:40:00.0'.
* @group datetime_funcs
* @since 2.4.0
*/
def to_utc_timestamp(ts: Column, tz: Column): Column = Column.fn("to_utc_timestamp", ts, tz)
/**
* Bucketize rows into one or more time windows given a timestamp specifying column. Window
* starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window
* [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in
* the order of months are not supported. The following example takes the average stock price
* for a one minute window every 10 seconds starting 5 seconds after the hour:
*
* {{{
* val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType
* df.groupBy(window($"timestamp", "1 minute", "10 seconds", "5 seconds"), $"stockId")
* .agg(mean("price"))
* }}}
*
* The windows will look like:
*
* {{{
* 09:00:05-09:01:05
* 09:00:15-09:01:15
* 09:00:25-09:01:25 ...
* }}}
*
* For a streaming query, you may use the function `current_timestamp` to generate windows on
* processing time.
*
* @param timeColumn
* The column or the expression to use as the timestamp for windowing by time. The time column
* must be of TimestampType or TimestampNTZType.
* @param windowDuration
* A string specifying the width of the window, e.g. `10 minutes`, `1 second`. Check
* `org.apache.spark.unsafe.types.CalendarInterval` for valid duration identifiers. Note that
* the duration is a fixed length of time, and does not vary over time according to a
* calendar. For example, `1 day` always means 86,400,000 milliseconds, not a calendar day.
* @param slideDuration
* A string specifying the sliding interval of the window, e.g. `1 minute`. A new window will
* be generated every `slideDuration`. Must be less than or equal to the `windowDuration`.
* Check `org.apache.spark.unsafe.types.CalendarInterval` for valid duration identifiers. This
* duration is likewise absolute, and does not vary according to a calendar.
* @param startTime
* The offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals.
* For example, in order to have hourly tumbling windows that start 15 minutes past the hour,
* e.g. 12:15-13:15, 13:15-14:15... provide `startTime` as `15 minutes`.
*
* @group datetime_funcs
* @since 2.0.0
*/
def window(
timeColumn: Column,
windowDuration: String,
slideDuration: String,
startTime: String): Column =
Column.fn("window", timeColumn, lit(windowDuration), lit(slideDuration), lit(startTime))
/**
* Bucketize rows into one or more time windows given a timestamp specifying column. Window
* starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window
* [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in
* the order of months are not supported. The windows start beginning at 1970-01-01 00:00:00
* UTC. The following example takes the average stock price for a one minute window every 10
* seconds:
*
* {{{
* val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType
* df.groupBy(window($"timestamp", "1 minute", "10 seconds"), $"stockId")
* .agg(mean("price"))
* }}}
*
* The windows will look like:
*
* {{{
* 09:00:00-09:01:00
* 09:00:10-09:01:10
* 09:00:20-09:01:20 ...
* }}}
*
* For a streaming query, you may use the function `current_timestamp` to generate windows on
* processing time.
*
* @param timeColumn
* The column or the expression to use as the timestamp for windowing by time. The time column
* must be of TimestampType or TimestampNTZType.
* @param windowDuration
* A string specifying the width of the window, e.g. `10 minutes`, `1 second`. Check
* `org.apache.spark.unsafe.types.CalendarInterval` for valid duration identifiers. Note that
* the duration is a fixed length of time, and does not vary over time according to a
* calendar. For example, `1 day` always means 86,400,000 milliseconds, not a calendar day.
* @param slideDuration
* A string specifying the sliding interval of the window, e.g. `1 minute`. A new window will
* be generated every `slideDuration`. Must be less than or equal to the `windowDuration`.
* Check `org.apache.spark.unsafe.types.CalendarInterval` for valid duration identifiers. This
* duration is likewise absolute, and does not vary according to a calendar.
*
* @group datetime_funcs
* @since 2.0.0
*/
def window(timeColumn: Column, windowDuration: String, slideDuration: String): Column = {
window(timeColumn, windowDuration, slideDuration, "0 second")
}
/**
* Generates tumbling time windows given a timestamp specifying column. Window starts are
* inclusive but the window ends are exclusive, e.g. 12:05 will be in the window [12:05,12:10)
* but not in [12:00,12:05). Windows can support microsecond precision. Windows in the order of
* months are not supported. The windows start beginning at 1970-01-01 00:00:00 UTC. The
* following example takes the average stock price for a one minute tumbling window:
*
* {{{
* val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType
* df.groupBy(window($"timestamp", "1 minute"), $"stockId")
* .agg(mean("price"))
* }}}
*
* The windows will look like:
*
* {{{
* 09:00:00-09:01:00
* 09:01:00-09:02:00
* 09:02:00-09:03:00 ...
* }}}
*
* For a streaming query, you may use the function `current_timestamp` to generate windows on
* processing time.
*
* @param timeColumn
* The column or the expression to use as the timestamp for windowing by time. The time column
* must be of TimestampType or TimestampNTZType.
* @param windowDuration
* A string specifying the width of the window, e.g. `10 minutes`, `1 second`. Check
* `org.apache.spark.unsafe.types.CalendarInterval` for valid duration identifiers.
*
* @group datetime_funcs
* @since 2.0.0
*/
def window(timeColumn: Column, windowDuration: String): Column = {
window(timeColumn, windowDuration, windowDuration, "0 second")
}
/**
* Extracts the event time from the window column.
*
* The window column is of StructType { start: Timestamp, end: Timestamp } where start is
* inclusive and end is exclusive. Since event time can support microsecond precision,
* window_time(window) = window.end - 1 microsecond.
*
* @param windowColumn
* The window column (typically produced by window aggregation) of type StructType { start:
* Timestamp, end: Timestamp }
*
* @group datetime_funcs
* @since 3.4.0
*/
def window_time(windowColumn: Column): Column = Column.fn("window_time", windowColumn)
/**
* Generates session window given a timestamp specifying column.
*
* Session window is one of dynamic windows, which means the length of window is varying
* according to the given inputs. The length of session window is defined as "the timestamp of
* latest input of the session + gap duration", so when the new inputs are bound to the current
* session window, the end time of session window can be expanded according to the new inputs.
*
* Windows can support microsecond precision. gapDuration in the order of months are not
* supported.
*
* For a streaming query, you may use the function `current_timestamp` to generate windows on
* processing time.
*
* @param timeColumn
* The column or the expression to use as the timestamp for windowing by time. The time column
* must be of TimestampType or TimestampNTZType.
* @param gapDuration
* A string specifying the timeout of the session, e.g. `10 minutes`, `1 second`. Check
* `org.apache.spark.unsafe.types.CalendarInterval` for valid duration identifiers.
*
* @group datetime_funcs
* @since 3.2.0
*/
def session_window(timeColumn: Column, gapDuration: String): Column =
session_window(timeColumn, lit(gapDuration))
/**
* Generates session window given a timestamp specifying column.
*
* Session window is one of dynamic windows, which means the length of window is varying
* according to the given inputs. For static gap duration, the length of session window is
* defined as "the timestamp of latest input of the session + gap duration", so when the new
* inputs are bound to the current session window, the end time of session window can be
* expanded according to the new inputs.
*
* Besides a static gap duration value, users can also provide an expression to specify gap
* duration dynamically based on the input row. With dynamic gap duration, the closing of a
* session window does not depend on the latest input anymore. A session window's range is the
* union of all events' ranges which are determined by event start time and evaluated gap
* duration during the query execution. Note that the rows with negative or zero gap duration
* will be filtered out from the aggregation.
*
* Windows can support microsecond precision. gapDuration in the order of months are not
* supported.
*
* For a streaming query, you may use the function `current_timestamp` to generate windows on
* processing time.
*
* @param timeColumn
* The column or the expression to use as the timestamp for windowing by time. The time column
* must be of TimestampType or TimestampNTZType.
* @param gapDuration
* A column specifying the timeout of the session. It could be static value, e.g. `10
* minutes`, `1 second`, or an expression/UDF that specifies gap duration dynamically based on
* the input row.
*
* @group datetime_funcs
* @since 3.2.0
*/
def session_window(timeColumn: Column, gapDuration: Column): Column =
Column.fn("session_window", timeColumn, gapDuration)
/**
* Converts the number of seconds from the Unix epoch (1970-01-01T00:00:00Z) to a timestamp.
* @group datetime_funcs
* @since 3.1.0
*/
def timestamp_seconds(e: Column): Column = Column.fn("timestamp_seconds", e)
/**
* Creates timestamp from the number of milliseconds since UTC epoch.
*
* @group datetime_funcs
* @since 3.5.0
*/
def timestamp_millis(e: Column): Column = Column.fn("timestamp_millis", e)
/**
* Creates timestamp from the number of microseconds since UTC epoch.
*
* @group datetime_funcs
* @since 3.5.0
*/
def timestamp_micros(e: Column): Column = Column.fn("timestamp_micros", e)
/**
* Gets the difference between the timestamps in the specified units by truncating the fraction
* part.
*
* @group datetime_funcs
* @since 4.0.0
*/
def timestamp_diff(unit: String, start: Column, end: Column): Column =
Column.internalFn("timestampdiff", lit(unit), start, end)
/**
* Adds the specified number of units to the given timestamp.
*
* @group datetime_funcs
* @since 4.0.0
*/
def timestamp_add(unit: String, quantity: Column, ts: Column): Column =
Column.internalFn("timestampadd", lit(unit), quantity, ts)
/**
* Parses the `timestamp` expression with the `format` expression to a timestamp without time
* zone. Returns null with invalid input.
*
* @group datetime_funcs
* @since 3.5.0
*/
def to_timestamp_ltz(timestamp: Column, format: Column): Column =
Column.fn("to_timestamp_ltz", timestamp, format)
/**
* Parses the `timestamp` expression with the default format to a timestamp without time zone.
* The default format follows casting rules to a timestamp. Returns null with invalid input.
*
* @group datetime_funcs
* @since 3.5.0
*/
def to_timestamp_ltz(timestamp: Column): Column =
Column.fn("to_timestamp_ltz", timestamp)
/**
* Parses the `timestamp_str` expression with the `format` expression to a timestamp without
* time zone. Returns null with invalid input.
*
* @group datetime_funcs
* @since 3.5.0
*/
def to_timestamp_ntz(timestamp: Column, format: Column): Column =
Column.fn("to_timestamp_ntz", timestamp, format)
/**
* Parses the `timestamp` expression with the default format to a timestamp without time zone.
* The default format follows casting rules to a timestamp. Returns null with invalid input.
*
* @group datetime_funcs
* @since 3.5.0
*/
def to_timestamp_ntz(timestamp: Column): Column =
Column.fn("to_timestamp_ntz", timestamp)
/**
* Returns the UNIX timestamp of the given time.
*
* @group datetime_funcs
* @since 3.5.0
*/
def to_unix_timestamp(timeExp: Column, format: Column): Column =
Column.fn("to_unix_timestamp", timeExp, format)
/**
* Returns the UNIX timestamp of the given time.
*
* @group datetime_funcs
* @since 3.5.0
*/
def to_unix_timestamp(timeExp: Column): Column =
Column.fn("to_unix_timestamp", timeExp)
/**
* Extracts the three-letter abbreviated month name from a given date/timestamp/string.
*
* @group datetime_funcs
* @since 4.0.0
*/
def monthname(timeExp: Column): Column =
Column.fn("monthname", timeExp)
/**
* Extracts the three-letter abbreviated day name from a given date/timestamp/string.
*
* @group datetime_funcs
* @since 4.0.0
*/
def dayname(timeExp: Column): Column =
Column.fn("dayname", timeExp)
//////////////////////////////////////////////////////////////////////////////////////////////
// Collection functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns null if the array is null, true if the array contains `value`, and false otherwise.
* @group array_funcs
* @since 1.5.0
*/
def array_contains(column: Column, value: Any): Column =
Column.fn("array_contains", column, lit(value))
/**
* Returns an ARRAY containing all elements from the source ARRAY as well as the new element.
* The new element/column is located at end of the ARRAY.
*
* @group array_funcs
* @since 3.4.0
*/
def array_append(column: Column, element: Any): Column =
Column.fn("array_append", column, lit(element))
/**
* Returns `true` if `a1` and `a2` have at least one non-null element in common. If not and both
* the arrays are non-empty and any of them contains a `null`, it returns `null`. It returns
* `false` otherwise.
* @group array_funcs
* @since 2.4.0
*/
def arrays_overlap(a1: Column, a2: Column): Column = Column.fn("arrays_overlap", a1, a2)
/**
* Returns an array containing all the elements in `x` from index `start` (or starting from the
* end if `start` is negative) with the specified `length`.
*
* @param x
* the array column to be sliced
* @param start
* the starting index
* @param length
* the length of the slice
*
* @group array_funcs
* @since 2.4.0
*/
def slice(x: Column, start: Int, length: Int): Column =
slice(x, lit(start), lit(length))
/**
* Returns an array containing all the elements in `x` from index `start` (or starting from the
* end if `start` is negative) with the specified `length`.
*
* @param x
* the array column to be sliced
* @param start
* the starting index
* @param length
* the length of the slice
*
* @group array_funcs
* @since 3.1.0
*/
def slice(x: Column, start: Column, length: Column): Column =
Column.fn("slice", x, start, length)
/**
* Concatenates the elements of `column` using the `delimiter`. Null values are replaced with
* `nullReplacement`.
* @group array_funcs
* @since 2.4.0
*/
def array_join(column: Column, delimiter: String, nullReplacement: String): Column =
Column.fn("array_join", column, lit(delimiter), lit(nullReplacement))
/**
* Concatenates the elements of `column` using the `delimiter`.
* @group array_funcs
* @since 2.4.0
*/
def array_join(column: Column, delimiter: String): Column =
Column.fn("array_join", column, lit(delimiter))
/**
* Concatenates multiple input columns together into a single column. The function works with
* strings, binary and compatible array columns.
*
* @note
* Returns null if any of the input columns are null.
*
* @group collection_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def concat(exprs: Column*): Column = Column.fn("concat", exprs: _*)
/**
* Locates the position of the first occurrence of the value in the given array as long. Returns
* null if either of the arguments are null.
*
* @note
* The position is not zero based, but 1 based index. Returns 0 if value could not be found in
* array.
*
* @group array_funcs
* @since 2.4.0
*/
def array_position(column: Column, value: Any): Column =
Column.fn("array_position", column, lit(value))
/**
* Returns element of array at given index in value if column is array. Returns value for the
* given key in value if column is map.
*
* @group collection_funcs
* @since 2.4.0
*/
def element_at(column: Column, value: Any): Column = Column.fn("element_at", column, lit(value))
/**
* (array, index) - Returns element of array at given (1-based) index. If Index is 0, Spark will
* throw an error. If index < 0, accesses elements from the last to the first. The function
* always returns NULL if the index exceeds the length of the array.
*
* (map, key) - Returns value for given key. The function always returns NULL if the key is not
* contained in the map.
*
* @group collection_funcs
* @since 3.5.0
*/
def try_element_at(column: Column, value: Column): Column =
Column.fn("try_element_at", column, value)
/**
* Returns element of array at given (0-based) index. If the index points outside of the array
* boundaries, then this function returns NULL.
*
* @group array_funcs
* @since 3.4.0
*/
def get(column: Column, index: Column): Column = Column.fn("get", column, index)
/**
* Sorts the input array in ascending order. The elements of the input array must be orderable.
* NaN is greater than any non-NaN elements for double/float type. Null elements will be placed
* at the end of the returned array.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_sort(e: Column): Column = Column.fn("array_sort", e)
/**
* Sorts the input array based on the given comparator function. The comparator will take two
* arguments representing two elements of the array. It returns a negative integer, 0, or a
* positive integer as the first element is less than, equal to, or greater than the second
* element. If the comparator function returns null, the function will fail and raise an error.
*
* @group collection_funcs
* @since 3.4.0
*/
def array_sort(e: Column, comparator: (Column, Column) => Column): Column =
Column.fn("array_sort", e, createLambda(comparator))
/**
* Remove all elements that equal to element from the given array.
*
* @group array_funcs
* @since 2.4.0
*/
def array_remove(column: Column, element: Any): Column =
Column.fn("array_remove", column, lit(element))
/**
* Remove all null elements from the given array.
*
* @group array_funcs
* @since 3.4.0
*/
def array_compact(column: Column): Column = Column.fn("array_compact", column)
/**
* Returns an array containing value as well as all elements from array. The new element is
* positioned at the beginning of the array.
*
* @group array_funcs
* @since 3.5.0
*/
def array_prepend(column: Column, element: Any): Column =
Column.fn("array_prepend", column, lit(element))
/**
* Removes duplicate values from the array.
* @group array_funcs
* @since 2.4.0
*/
def array_distinct(e: Column): Column = Column.fn("array_distinct", e)
/**
* Returns an array of the elements in the intersection of the given two arrays, without
* duplicates.
*
* @group array_funcs
* @since 2.4.0
*/
def array_intersect(col1: Column, col2: Column): Column =
Column.fn("array_intersect", col1, col2)
/**
* Adds an item into a given array at a specified position
*
* @group array_funcs
* @since 3.4.0
*/
def array_insert(arr: Column, pos: Column, value: Column): Column =
Column.fn("array_insert", arr, pos, value)
/**
* Returns an array of the elements in the union of the given two arrays, without duplicates.
*
* @group array_funcs
* @since 2.4.0
*/
def array_union(col1: Column, col2: Column): Column =
Column.fn("array_union", col1, col2)
/**
* Returns an array of the elements in the first array but not in the second array, without
* duplicates. The order of elements in the result is not determined
*
* @group array_funcs
* @since 2.4.0
*/
def array_except(col1: Column, col2: Column): Column =
Column.fn("array_except", col1, col2)
private def createLambda(f: Column => Column) = {
val x = internal.UnresolvedNamedLambdaVariable("x")
val function = f(Column(x)).node
Column(internal.LambdaFunction(function, Seq(x)))
}
private def createLambda(f: (Column, Column) => Column) = {
val x = internal.UnresolvedNamedLambdaVariable("x")
val y = internal.UnresolvedNamedLambdaVariable("y")
val function = f(Column(x), Column(y)).node
Column(internal.LambdaFunction(function, Seq(x, y)))
}
private def createLambda(f: (Column, Column, Column) => Column) = {
val x = internal.UnresolvedNamedLambdaVariable("x")
val y = internal.UnresolvedNamedLambdaVariable("y")
val z = internal.UnresolvedNamedLambdaVariable("z")
val function = f(Column(x), Column(y), Column(z)).node
Column(internal.LambdaFunction(function, Seq(x, y, z)))
}
/**
* Returns an array of elements after applying a transformation to each element in the input
* array.
* {{{
* df.select(transform(col("i"), x => x + 1))
* }}}
*
* @param column
* the input array column
* @param f
* col => transformed_col, the lambda function to transform the input column
*
* @group collection_funcs
* @since 3.0.0
*/
def transform(column: Column, f: Column => Column): Column =
Column.fn("transform", column, createLambda(f))
/**
* Returns an array of elements after applying a transformation to each element in the input
* array.
* {{{
* df.select(transform(col("i"), (x, i) => x + i))
* }}}
*
* @param column
* the input array column
* @param f
* (col, index) => transformed_col, the lambda function to transform the input column given
* the index. Indices start at 0.
*
* @group collection_funcs
* @since 3.0.0
*/
def transform(column: Column, f: (Column, Column) => Column): Column =
Column.fn("transform", column, createLambda(f))
/**
* Returns whether a predicate holds for one or more elements in the array.
* {{{
* df.select(exists(col("i"), _ % 2 === 0))
* }}}
*
* @param column
* the input array column
* @param f
* col => predicate, the Boolean predicate to check the input column
*
* @group collection_funcs
* @since 3.0.0
*/
def exists(column: Column, f: Column => Column): Column =
Column.fn("exists", column, createLambda(f))
/**
* Returns whether a predicate holds for every element in the array.
* {{{
* df.select(forall(col("i"), x => x % 2 === 0))
* }}}
*
* @param column
* the input array column
* @param f
* col => predicate, the Boolean predicate to check the input column
*
* @group collection_funcs
* @since 3.0.0
*/
def forall(column: Column, f: Column => Column): Column =
Column.fn("forall", column, createLambda(f))
/**
* Returns an array of elements for which a predicate holds in a given array.
* {{{
* df.select(filter(col("s"), x => x % 2 === 0))
* }}}
*
* @param column
* the input array column
* @param f
* col => predicate, the Boolean predicate to filter the input column
*
* @group collection_funcs
* @since 3.0.0
*/
def filter(column: Column, f: Column => Column): Column =
Column.fn("filter", column, createLambda(f))
/**
* Returns an array of elements for which a predicate holds in a given array.
* {{{
* df.select(filter(col("s"), (x, i) => i % 2 === 0))
* }}}
*
* @param column
* the input array column
* @param f
* (col, index) => predicate, the Boolean predicate to filter the input column given the
* index. Indices start at 0.
*
* @group collection_funcs
* @since 3.0.0
*/
def filter(column: Column, f: (Column, Column) => Column): Column =
Column.fn("filter", column, createLambda(f))
/**
* Applies a binary operator to an initial state and all elements in the array, and reduces this
* to a single state. The final state is converted into the final result by applying a finish
* function.
* {{{
* df.select(aggregate(col("i"), lit(0), (acc, x) => acc + x, _ * 10))
* }}}
*
* @param expr
* the input array column
* @param initialValue
* the initial value
* @param merge
* (combined_value, input_value) => combined_value, the merge function to merge an input value
* to the combined_value
* @param finish
* combined_value => final_value, the lambda function to convert the combined value of all
* inputs to final result
*
* @group collection_funcs
* @since 3.0.0
*/
def aggregate(
expr: Column,
initialValue: Column,
merge: (Column, Column) => Column,
finish: Column => Column): Column =
Column.fn("aggregate", expr, initialValue, createLambda(merge), createLambda(finish))
/**
* Applies a binary operator to an initial state and all elements in the array, and reduces this
* to a single state.
* {{{
* df.select(aggregate(col("i"), lit(0), (acc, x) => acc + x))
* }}}
*
* @param expr
* the input array column
* @param initialValue
* the initial value
* @param merge
* (combined_value, input_value) => combined_value, the merge function to merge an input value
* to the combined_value
* @group collection_funcs
* @since 3.0.0
*/
def aggregate(expr: Column, initialValue: Column, merge: (Column, Column) => Column): Column =
aggregate(expr, initialValue, merge, c => c)
/**
* Applies a binary operator to an initial state and all elements in the array, and reduces this
* to a single state. The final state is converted into the final result by applying a finish
* function.
* {{{
* df.select(aggregate(col("i"), lit(0), (acc, x) => acc + x, _ * 10))
* }}}
*
* @param expr
* the input array column
* @param initialValue
* the initial value
* @param merge
* (combined_value, input_value) => combined_value, the merge function to merge an input value
* to the combined_value
* @param finish
* combined_value => final_value, the lambda function to convert the combined value of all
* inputs to final result
*
* @group collection_funcs
* @since 3.5.0
*/
def reduce(
expr: Column,
initialValue: Column,
merge: (Column, Column) => Column,
finish: Column => Column): Column =
Column.fn("reduce", expr, initialValue, createLambda(merge), createLambda(finish))
/**
* Applies a binary operator to an initial state and all elements in the array, and reduces this
* to a single state.
* {{{
* df.select(aggregate(col("i"), lit(0), (acc, x) => acc + x))
* }}}
*
* @param expr
* the input array column
* @param initialValue
* the initial value
* @param merge
* (combined_value, input_value) => combined_value, the merge function to merge an input value
* to the combined_value
* @group collection_funcs
* @since 3.5.0
*/
def reduce(expr: Column, initialValue: Column, merge: (Column, Column) => Column): Column =
reduce(expr, initialValue, merge, c => c)
/**
* Merge two given arrays, element-wise, into a single array using a function. If one array is
* shorter, nulls are appended at the end to match the length of the longer array, before
* applying the function.
* {{{
* df.select(zip_with(df1("val1"), df1("val2"), (x, y) => x + y))
* }}}
*
* @param left
* the left input array column
* @param right
* the right input array column
* @param f
* (lCol, rCol) => col, the lambda function to merge two input columns into one column
*
* @group collection_funcs
* @since 3.0.0
*/
def zip_with(left: Column, right: Column, f: (Column, Column) => Column): Column =
Column.fn("zip_with", left, right, createLambda(f))
/**
* Applies a function to every key-value pair in a map and returns a map with the results of
* those applications as the new keys for the pairs.
* {{{
* df.select(transform_keys(col("i"), (k, v) => k + v))
* }}}
*
* @param expr
* the input map column
* @param f
* (key, value) => new_key, the lambda function to transform the key of input map column
*
* @group collection_funcs
* @since 3.0.0
*/
def transform_keys(expr: Column, f: (Column, Column) => Column): Column =
Column.fn("transform_keys", expr, createLambda(f))
/**
* Applies a function to every key-value pair in a map and returns a map with the results of
* those applications as the new values for the pairs.
* {{{
* df.select(transform_values(col("i"), (k, v) => k + v))
* }}}
*
* @param expr
* the input map column
* @param f
* (key, value) => new_value, the lambda function to transform the value of input map column
*
* @group collection_funcs
* @since 3.0.0
*/
def transform_values(expr: Column, f: (Column, Column) => Column): Column =
Column.fn("transform_values", expr, createLambda(f))
/**
* Returns a map whose key-value pairs satisfy a predicate.
* {{{
* df.select(map_filter(col("m"), (k, v) => k * 10 === v))
* }}}
*
* @param expr
* the input map column
* @param f
* (key, value) => predicate, the Boolean predicate to filter the input map column
*
* @group collection_funcs
* @since 3.0.0
*/
def map_filter(expr: Column, f: (Column, Column) => Column): Column =
Column.fn("map_filter", expr, createLambda(f))
/**
* Merge two given maps, key-wise into a single map using a function.
* {{{
* df.select(map_zip_with(df("m1"), df("m2"), (k, v1, v2) => k === v1 + v2))
* }}}
*
* @param left
* the left input map column
* @param right
* the right input map column
* @param f
* (key, value1, value2) => new_value, the lambda function to merge the map values
*
* @group collection_funcs
* @since 3.0.0
*/
def map_zip_with(left: Column, right: Column, f: (Column, Column, Column) => Column): Column =
Column.fn("map_zip_with", left, right, createLambda(f))
/**
* Creates a new row for each element in the given array or map column. Uses the default column
* name `col` for elements in the array and `key` and `value` for elements in the map unless
* specified otherwise.
*
* @group generator_funcs
* @since 1.3.0
*/
def explode(e: Column): Column = Column.fn("explode", e)
/**
* Creates a new row for each element in the given array or map column. Uses the default column
* name `col` for elements in the array and `key` and `value` for elements in the map unless
* specified otherwise. Unlike explode, if the array/map is null or empty then null is produced.
*
* @group generator_funcs
* @since 2.2.0
*/
def explode_outer(e: Column): Column = Column.fn("explode_outer", e)
/**
* Creates a new row for each element with position in the given array or map column. Uses the
* default column name `pos` for position, and `col` for elements in the array and `key` and
* `value` for elements in the map unless specified otherwise.
*
* @group generator_funcs
* @since 2.1.0
*/
def posexplode(e: Column): Column = Column.fn("posexplode", e)
/**
* Creates a new row for each element with position in the given array or map column. Uses the
* default column name `pos` for position, and `col` for elements in the array and `key` and
* `value` for elements in the map unless specified otherwise. Unlike posexplode, if the
* array/map is null or empty then the row (null, null) is produced.
*
* @group generator_funcs
* @since 2.2.0
*/
def posexplode_outer(e: Column): Column = Column.fn("posexplode_outer", e)
/**
* Creates a new row for each element in the given array of structs.
*
* @group generator_funcs
* @since 3.4.0
*/
def inline(e: Column): Column = Column.fn("inline", e)
/**
* Creates a new row for each element in the given array of structs. Unlike inline, if the array
* is null or empty then null is produced for each nested column.
*
* @group generator_funcs
* @since 3.4.0
*/
def inline_outer(e: Column): Column = Column.fn("inline_outer", e)
/**
* Extracts json object from a json string based on json path specified, and returns json string
* of the extracted json object. It will return null if the input json string is invalid.
*
* @group json_funcs
* @since 1.6.0
*/
def get_json_object(e: Column, path: String): Column =
Column.fn("get_json_object", e, lit(path))
/**
* Creates a new row for a json column according to the given field names.
*
* @group json_funcs
* @since 1.6.0
*/
@scala.annotation.varargs
def json_tuple(json: Column, fields: String*): Column = {
require(fields.nonEmpty, "at least 1 field name should be given.")
Column.fn("json_tuple", json +: fields.map(lit): _*)
}
// scalastyle:off line.size.limit
/**
* (Scala-specific) Parses a column containing a JSON string into a `StructType` with the
* specified schema. Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema to use when parsing the json string
* @param options
* options to control how the json is parsed. Accepts the same options as the json data
* source. See Data
* Source Option in the version you use.
*
* @group json_funcs
* @since 2.1.0
*/
// scalastyle:on line.size.limit
def from_json(e: Column, schema: StructType, options: Map[String, String]): Column =
from_json(e, schema.asInstanceOf[DataType], options)
// scalastyle:off line.size.limit
/**
* (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` with the specified schema. Returns `null`, in the
* case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema to use when parsing the json string
* @param options
* options to control how the json is parsed. accepts the same options and the json data
* source. See Data
* Source Option in the version you use.
*
* @group json_funcs
* @since 2.2.0
*/
// scalastyle:on line.size.limit
def from_json(e: Column, schema: DataType, options: Map[String, String]): Column = {
from_json(e, lit(schema.sql), options.iterator)
}
// scalastyle:off line.size.limit
/**
* (Java-specific) Parses a column containing a JSON string into a `StructType` with the
* specified schema. Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema to use when parsing the json string
* @param options
* options to control how the json is parsed. accepts the same options and the json data
* source. See Data
* Source Option in the version you use.
*
* @group json_funcs
* @since 2.1.0
*/
// scalastyle:on line.size.limit
def from_json(e: Column, schema: StructType, options: java.util.Map[String, String]): Column =
from_json(e, schema, options.asScala.toMap)
// scalastyle:off line.size.limit
/**
* (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` with the specified schema. Returns `null`, in the
* case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema to use when parsing the json string
* @param options
* options to control how the json is parsed. accepts the same options and the json data
* source. See Data
* Source Option in the version you use.
*
* @group json_funcs
* @since 2.2.0
*/
// scalastyle:on line.size.limit
def from_json(e: Column, schema: DataType, options: java.util.Map[String, String]): Column = {
from_json(e, schema, options.asScala.toMap)
}
/**
* Parses a column containing a JSON string into a `StructType` with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema to use when parsing the json string
*
* @group json_funcs
* @since 2.1.0
*/
def from_json(e: Column, schema: StructType): Column =
from_json(e, schema, Map.empty[String, String])
/**
* Parses a column containing a JSON string into a `MapType` with `StringType` as keys type,
* `StructType` or `ArrayType` with the specified schema. Returns `null`, in the case of an
* unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema to use when parsing the json string
*
* @group json_funcs
* @since 2.2.0
*/
def from_json(e: Column, schema: DataType): Column =
from_json(e, schema, Map.empty[String, String])
// scalastyle:off line.size.limit
/**
* (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` with the specified schema. Returns `null`, in the
* case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema as a DDL-formatted string.
* @param options
* options to control how the json is parsed. accepts the same options and the json data
* source. See Data
* Source Option in the version you use.
*
* @group json_funcs
* @since 2.1.0
*/
// scalastyle:on line.size.limit
def from_json(e: Column, schema: String, options: java.util.Map[String, String]): Column = {
from_json(e, schema, options.asScala.toMap)
}
// scalastyle:off line.size.limit
/**
* (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` with the specified schema. Returns `null`, in the
* case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema as a DDL-formatted string.
* @param options
* options to control how the json is parsed. accepts the same options and the json data
* source. See Data
* Source Option in the version you use.
*
* @group json_funcs
* @since 2.3.0
*/
// scalastyle:on line.size.limit
def from_json(e: Column, schema: String, options: Map[String, String]): Column = {
from_json(e, lit(schema), options.asJava)
}
/**
* (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` of `StructType`s with the specified schema. Returns
* `null`, in the case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema to use when parsing the json string
*
* @group json_funcs
* @since 2.4.0
*/
def from_json(e: Column, schema: Column): Column = {
from_json(e, schema, Map.empty[String, String].asJava)
}
// scalastyle:off line.size.limit
/**
* (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` of `StructType`s with the specified schema. Returns
* `null`, in the case of an unparseable string.
*
* @param e
* a string column containing JSON data.
* @param schema
* the schema to use when parsing the json string
* @param options
* options to control how the json is parsed. accepts the same options and the json data
* source. See Data
* Source Option in the version you use.
*
* @group json_funcs
* @since 2.4.0
*/
// scalastyle:on line.size.limit
def from_json(e: Column, schema: Column, options: java.util.Map[String, String]): Column = {
from_json(e, schema, options.asScala.iterator)
}
private def from_json(
e: Column,
schema: Column,
options: Iterator[(String, String)]): Column = {
Column.fnWithOptions("from_json", options, e, schema)
}
/**
* Parses a JSON string and constructs a Variant value. Returns null if the input string is not
* a valid JSON value.
*
* @param json
* a string column that contains JSON data.
*
* @group variant_funcs
* @since 4.0.0
*/
def try_parse_json(json: Column): Column = Column.fn("try_parse_json", json)
/**
* Parses a JSON string and constructs a Variant value.
*
* @param json
* a string column that contains JSON data.
* @group variant_funcs
* @since 4.0.0
*/
def parse_json(json: Column): Column = Column.fn("parse_json", json)
/**
* Converts a column containing nested inputs (array/map/struct) into a variants where maps and
* structs are converted to variant objects which are unordered unlike SQL structs. Input maps
* can only have string keys.
*
* @param col
* a column with a nested schema or column name.
* @group variant_funcs
* @since 4.0.0
*/
def to_variant_object(col: Column): Column = Column.fn("to_variant_object", col)
/**
* Check if a variant value is a variant null. Returns true if and only if the input is a
* variant null and false otherwise (including in the case of SQL NULL).
*
* @param v
* a variant column.
* @group variant_funcs
* @since 4.0.0
*/
def is_variant_null(v: Column): Column = Column.fn("is_variant_null", v)
/**
* Extracts a sub-variant from `v` according to `path`, and then cast the sub-variant to
* `targetType`. Returns null if the path does not exist. Throws an exception if the cast fails.
*
* @param v
* a variant column.
* @param path
* the extraction path. A valid path should start with `$` and is followed by zero or more
* segments like `[123]`, `.name`, `['name']`, or `["name"]`.
* @param targetType
* the target data type to cast into, in a DDL-formatted string.
* @group variant_funcs
* @since 4.0.0
*/
def variant_get(v: Column, path: String, targetType: String): Column =
Column.fn("variant_get", v, lit(path), lit(targetType))
/**
* Extracts a sub-variant from `v` according to `path`, and then cast the sub-variant to
* `targetType`. Returns null if the path does not exist or the cast fails..
*
* @param v
* a variant column.
* @param path
* the extraction path. A valid path should start with `$` and is followed by zero or more
* segments like `[123]`, `.name`, `['name']`, or `["name"]`.
* @param targetType
* the target data type to cast into, in a DDL-formatted string.
* @group variant_funcs
* @since 4.0.0
*/
def try_variant_get(v: Column, path: String, targetType: String): Column =
Column.fn("try_variant_get", v, lit(path), lit(targetType))
/**
* Returns schema in the SQL format of a variant.
*
* @param v
* a variant column.
* @group variant_funcs
* @since 4.0.0
*/
def schema_of_variant(v: Column): Column = Column.fn("schema_of_variant", v)
/**
* Returns the merged schema in the SQL format of a variant column.
*
* @param v
* a variant column.
* @group variant_funcs
* @since 4.0.0
*/
def schema_of_variant_agg(v: Column): Column = Column.fn("schema_of_variant_agg", v)
/**
* Parses a JSON string and infers its schema in DDL format.
*
* @param json
* a JSON string.
*
* @group json_funcs
* @since 2.4.0
*/
def schema_of_json(json: String): Column = schema_of_json(lit(json))
/**
* Parses a JSON string and infers its schema in DDL format.
*
* @param json
* a foldable string column containing a JSON string.
*
* @group json_funcs
* @since 2.4.0
*/
def schema_of_json(json: Column): Column = Column.fn("schema_of_json", json)
// scalastyle:off line.size.limit
/**
* Parses a JSON string and infers its schema in DDL format using options.
*
* @param json
* a foldable string column containing JSON data.
* @param options
* options to control how the json is parsed. accepts the same options and the json data
* source. See Data
* Source Option in the version you use.
* @return
* a column with string literal containing schema in DDL format.
*
* @group json_funcs
* @since 3.0.0
*/
// scalastyle:on line.size.limit
def schema_of_json(json: Column, options: java.util.Map[String, String]): Column =
Column.fnWithOptions("schema_of_json", options.asScala.iterator, json)
/**
* Returns the number of elements in the outermost JSON array. `NULL` is returned in case of any
* other valid JSON string, `NULL` or an invalid JSON.
*
* @group json_funcs
* @since 3.5.0
*/
def json_array_length(e: Column): Column = Column.fn("json_array_length", e)
/**
* Returns all the keys of the outermost JSON object as an array. If a valid JSON object is
* given, all the keys of the outermost object will be returned as an array. If it is any other
* valid JSON string, an invalid JSON string or an empty string, the function returns null.
*
* @group json_funcs
* @since 3.5.0
*/
def json_object_keys(e: Column): Column = Column.fn("json_object_keys", e)
// scalastyle:off line.size.limit
/**
* (Scala-specific) Converts a column containing a `StructType`, `ArrayType` or a `MapType` into
* a JSON string with the specified schema. Throws an exception, in the case of an unsupported
* type.
*
* @param e
* a column containing a struct, an array or a map.
* @param options
* options to control how the struct column is converted into a json string. accepts the same
* options and the json data source. See Data
* Source Option in the version you use. Additionally the function supports the `pretty`
* option which enables pretty JSON generation.
*
* @group json_funcs
* @since 2.1.0
*/
// scalastyle:on line.size.limit
def to_json(e: Column, options: Map[String, String]): Column =
Column.fnWithOptions("to_json", options.iterator, e)
// scalastyle:off line.size.limit
/**
* (Java-specific) Converts a column containing a `StructType`, `ArrayType` or a `MapType` into
* a JSON string with the specified schema. Throws an exception, in the case of an unsupported
* type.
*
* @param e
* a column containing a struct, an array or a map.
* @param options
* options to control how the struct column is converted into a json string. accepts the same
* options and the json data source. See Data
* Source Option in the version you use. Additionally the function supports the `pretty`
* option which enables pretty JSON generation.
*
* @group json_funcs
* @since 2.1.0
*/
// scalastyle:on line.size.limit
def to_json(e: Column, options: java.util.Map[String, String]): Column =
to_json(e, options.asScala.toMap)
/**
* Converts a column containing a `StructType`, `ArrayType` or a `MapType` into a JSON string
* with the specified schema. Throws an exception, in the case of an unsupported type.
*
* @param e
* a column containing a struct, an array or a map.
*
* @group json_funcs
* @since 2.1.0
*/
def to_json(e: Column): Column =
to_json(e, Map.empty[String, String])
/**
* Masks the given string value. The function replaces characters with 'X' or 'x', and numbers
* with 'n'. This can be useful for creating copies of tables with sensitive information
* removed.
*
* @param input
* string value to mask. Supported types: STRING, VARCHAR, CHAR
*
* @group string_funcs
* @since 3.5.0
*/
def mask(input: Column): Column = Column.fn("mask", input)
/**
* Masks the given string value. The function replaces upper-case characters with specific
* character, lower-case characters with 'x', and numbers with 'n'. This can be useful for
* creating copies of tables with sensitive information removed.
*
* @param input
* string value to mask. Supported types: STRING, VARCHAR, CHAR
* @param upperChar
* character to replace upper-case characters with. Specify NULL to retain original character.
*
* @group string_funcs
* @since 3.5.0
*/
def mask(input: Column, upperChar: Column): Column =
Column.fn("mask", input, upperChar)
/**
* Masks the given string value. The function replaces upper-case and lower-case characters with
* the characters specified respectively, and numbers with 'n'. This can be useful for creating
* copies of tables with sensitive information removed.
*
* @param input
* string value to mask. Supported types: STRING, VARCHAR, CHAR
* @param upperChar
* character to replace upper-case characters with. Specify NULL to retain original character.
* @param lowerChar
* character to replace lower-case characters with. Specify NULL to retain original character.
*
* @group string_funcs
* @since 3.5.0
*/
def mask(input: Column, upperChar: Column, lowerChar: Column): Column =
Column.fn("mask", input, upperChar, lowerChar)
/**
* Masks the given string value. The function replaces upper-case, lower-case characters and
* numbers with the characters specified respectively. This can be useful for creating copies of
* tables with sensitive information removed.
*
* @param input
* string value to mask. Supported types: STRING, VARCHAR, CHAR
* @param upperChar
* character to replace upper-case characters with. Specify NULL to retain original character.
* @param lowerChar
* character to replace lower-case characters with. Specify NULL to retain original character.
* @param digitChar
* character to replace digit characters with. Specify NULL to retain original character.
*
* @group string_funcs
* @since 3.5.0
*/
def mask(input: Column, upperChar: Column, lowerChar: Column, digitChar: Column): Column =
Column.fn("mask", input, upperChar, lowerChar, digitChar)
/**
* Masks the given string value. This can be useful for creating copies of tables with sensitive
* information removed.
*
* @param input
* string value to mask. Supported types: STRING, VARCHAR, CHAR
* @param upperChar
* character to replace upper-case characters with. Specify NULL to retain original character.
* @param lowerChar
* character to replace lower-case characters with. Specify NULL to retain original character.
* @param digitChar
* character to replace digit characters with. Specify NULL to retain original character.
* @param otherChar
* character to replace all other characters with. Specify NULL to retain original character.
*
* @group string_funcs
* @since 3.5.0
*/
def mask(
input: Column,
upperChar: Column,
lowerChar: Column,
digitChar: Column,
otherChar: Column): Column =
Column.fn("mask", input, upperChar, lowerChar, digitChar, otherChar)
/**
* Returns length of array or map.
*
* This function returns -1 for null input only if spark.sql.ansi.enabled is false and
* spark.sql.legacy.sizeOfNull is true. Otherwise, it returns null for null input. With the
* default settings, the function returns null for null input.
*
* @group collection_funcs
* @since 1.5.0
*/
def size(e: Column): Column = Column.fn("size", e)
/**
* Returns length of array or map. This is an alias of `size` function.
*
* This function returns -1 for null input only if spark.sql.ansi.enabled is false and
* spark.sql.legacy.sizeOfNull is true. Otherwise, it returns null for null input. With the
* default settings, the function returns null for null input.
*
* @group collection_funcs
* @since 3.5.0
*/
def cardinality(e: Column): Column = Column.fn("cardinality", e)
/**
* Sorts the input array for the given column in ascending order, according to the natural
* ordering of the array elements. Null elements will be placed at the beginning of the returned
* array.
*
* @group array_funcs
* @since 1.5.0
*/
def sort_array(e: Column): Column = sort_array(e, asc = true)
/**
* Sorts the input array for the given column in ascending or descending order, according to the
* natural ordering of the array elements. NaN is greater than any non-NaN elements for
* double/float type. Null elements will be placed at the beginning of the returned array in
* ascending order or at the end of the returned array in descending order.
*
* @group array_funcs
* @since 1.5.0
*/
def sort_array(e: Column, asc: Boolean): Column = Column.fn("sort_array", e, lit(asc))
/**
* Returns the minimum value in the array. NaN is greater than any non-NaN elements for
* double/float type. NULL elements are skipped.
*
* @group array_funcs
* @since 2.4.0
*/
def array_min(e: Column): Column = Column.fn("array_min", e)
/**
* Returns the maximum value in the array. NaN is greater than any non-NaN elements for
* double/float type. NULL elements are skipped.
*
* @group array_funcs
* @since 2.4.0
*/
def array_max(e: Column): Column = Column.fn("array_max", e)
/**
* Returns the total number of elements in the array. The function returns null for null input.
*
* @group array_funcs
* @since 3.5.0
*/
def array_size(e: Column): Column = Column.fn("array_size", e)
/**
* Aggregate function: returns a list of objects with duplicates.
*
* @note
* The function is non-deterministic because the order of collected results depends on the
* order of the rows which may be non-deterministic after a shuffle.
* @group agg_funcs
* @since 3.5.0
*/
def array_agg(e: Column): Column = Column.fn("array_agg", e)
/**
* Returns a random permutation of the given array.
*
* @note
* The function is non-deterministic.
*
* @group array_funcs
* @since 2.4.0
*/
def shuffle(e: Column): Column = Column.fn("shuffle", e, lit(SparkClassUtils.random.nextLong))
/**
* Returns a reversed string or an array with reverse order of elements.
* @group collection_funcs
* @since 1.5.0
*/
def reverse(e: Column): Column = Column.fn("reverse", e)
/**
* Creates a single array from an array of arrays. If a structure of nested arrays is deeper
* than two levels, only one level of nesting is removed.
* @group array_funcs
* @since 2.4.0
*/
def flatten(e: Column): Column = Column.fn("flatten", e)
/**
* Generate a sequence of integers from start to stop, incrementing by step.
*
* @group array_funcs
* @since 2.4.0
*/
def sequence(start: Column, stop: Column, step: Column): Column =
Column.fn("sequence", start, stop, step)
/**
* Generate a sequence of integers from start to stop, incrementing by 1 if start is less than
* or equal to stop, otherwise -1.
*
* @group array_funcs
* @since 2.4.0
*/
def sequence(start: Column, stop: Column): Column = Column.fn("sequence", start, stop)
/**
* Creates an array containing the left argument repeated the number of times given by the right
* argument.
*
* @group array_funcs
* @since 2.4.0
*/
def array_repeat(left: Column, right: Column): Column = Column.fn("array_repeat", left, right)
/**
* Creates an array containing the left argument repeated the number of times given by the right
* argument.
*
* @group array_funcs
* @since 2.4.0
*/
def array_repeat(e: Column, count: Int): Column = array_repeat(e, lit(count))
/**
* Returns true if the map contains the key.
* @group map_funcs
* @since 3.3.0
*/
def map_contains_key(column: Column, key: Any): Column =
Column.fn("map_contains_key", column, lit(key))
/**
* Returns an unordered array containing the keys of the map.
* @group map_funcs
* @since 2.3.0
*/
def map_keys(e: Column): Column = Column.fn("map_keys", e)
/**
* Returns an unordered array containing the values of the map.
* @group map_funcs
* @since 2.3.0
*/
def map_values(e: Column): Column = Column.fn("map_values", e)
/**
* Returns an unordered array of all entries in the given map.
* @group map_funcs
* @since 3.0.0
*/
def map_entries(e: Column): Column = Column.fn("map_entries", e)
/**
* Returns a map created from the given array of entries.
* @group map_funcs
* @since 2.4.0
*/
def map_from_entries(e: Column): Column = Column.fn("map_from_entries", e)
/**
* Returns a merged array of structs in which the N-th struct contains all N-th values of input
* arrays.
* @group array_funcs
* @since 2.4.0
*/
@scala.annotation.varargs
def arrays_zip(e: Column*): Column = Column.fn("arrays_zip", e: _*)
/**
* Returns the union of all the given maps.
* @group map_funcs
* @since 2.4.0
*/
@scala.annotation.varargs
def map_concat(cols: Column*): Column = Column.fn("map_concat", cols: _*)
// scalastyle:off line.size.limit
/**
* Parses a column containing a CSV string into a `StructType` with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing CSV data.
* @param schema
* the schema to use when parsing the CSV string
* @param options
* options to control how the CSV is parsed. accepts the same options and the CSV data source.
* See Data
* Source Option in the version you use.
*
* @group csv_funcs
* @since 3.0.0
*/
// scalastyle:on line.size.limit
def from_csv(e: Column, schema: StructType, options: Map[String, String]): Column =
from_csv(e, lit(schema.toDDL), options.iterator)
// scalastyle:off line.size.limit
/**
* (Java-specific) Parses a column containing a CSV string into a `StructType` with the
* specified schema. Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing CSV data.
* @param schema
* the schema to use when parsing the CSV string
* @param options
* options to control how the CSV is parsed. accepts the same options and the CSV data source.
* See Data
* Source Option in the version you use.
*
* @group csv_funcs
* @since 3.0.0
*/
// scalastyle:on line.size.limit
def from_csv(e: Column, schema: Column, options: java.util.Map[String, String]): Column =
from_csv(e, schema, options.asScala.iterator)
private def from_csv(e: Column, schema: Column, options: Iterator[(String, String)]): Column =
Column.fnWithOptions("from_csv", options, e, schema)
/**
* Parses a CSV string and infers its schema in DDL format.
*
* @param csv
* a CSV string.
*
* @group csv_funcs
* @since 3.0.0
*/
def schema_of_csv(csv: String): Column = schema_of_csv(lit(csv))
/**
* Parses a CSV string and infers its schema in DDL format.
*
* @param csv
* a foldable string column containing a CSV string.
*
* @group csv_funcs
* @since 3.0.0
*/
def schema_of_csv(csv: Column): Column = schema_of_csv(csv, Collections.emptyMap())
// scalastyle:off line.size.limit
/**
* Parses a CSV string and infers its schema in DDL format using options.
*
* @param csv
* a foldable string column containing a CSV string.
* @param options
* options to control how the CSV is parsed. accepts the same options and the CSV data source.
* See Data
* Source Option in the version you use.
* @return
* a column with string literal containing schema in DDL format.
*
* @group csv_funcs
* @since 3.0.0
*/
// scalastyle:on line.size.limit
def schema_of_csv(csv: Column, options: java.util.Map[String, String]): Column =
Column.fnWithOptions("schema_of_csv", options.asScala.iterator, csv)
// scalastyle:off line.size.limit
/**
* (Java-specific) Converts a column containing a `StructType` into a CSV string with the
* specified schema. Throws an exception, in the case of an unsupported type.
*
* @param e
* a column containing a struct.
* @param options
* options to control how the struct column is converted into a CSV string. It accepts the
* same options and the CSV data source. See Data
* Source Option in the version you use.
*
* @group csv_funcs
* @since 3.0.0
*/
// scalastyle:on line.size.limit
def to_csv(e: Column, options: java.util.Map[String, String]): Column =
Column.fnWithOptions("to_csv", options.asScala.iterator, e)
/**
* Converts a column containing a `StructType` into a CSV string with the specified schema.
* Throws an exception, in the case of an unsupported type.
*
* @param e
* a column containing a struct.
*
* @group csv_funcs
* @since 3.0.0
*/
def to_csv(e: Column): Column = to_csv(e, Map.empty[String, String].asJava)
// scalastyle:off line.size.limit
/**
* Parses a column containing a XML string into the data type corresponding to the specified
* schema. Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing XML data.
* @param schema
* the schema to use when parsing the XML string
* @param options
* options to control how the XML is parsed. accepts the same options and the XML data source.
* See Data
* Source Option in the version you use.
* @group xml_funcs
* @since 4.0.0
*/
// scalastyle:on line.size.limit
def from_xml(e: Column, schema: StructType, options: java.util.Map[String, String]): Column =
from_xml(e, lit(schema.sql), options.asScala.iterator)
// scalastyle:off line.size.limit
/**
* (Java-specific) Parses a column containing a XML string into a `StructType` with the
* specified schema. Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing XML data.
* @param schema
* the schema as a DDL-formatted string.
* @param options
* options to control how the XML is parsed. accepts the same options and the xml data source.
* See Data
* Source Option in the version you use.
* @group xml_funcs
* @since 4.0.0
*/
// scalastyle:on line.size.limit
def from_xml(e: Column, schema: String, options: java.util.Map[String, String]): Column = {
from_xml(e, lit(schema), options)
}
// scalastyle:off line.size.limit
/**
* (Java-specific) Parses a column containing a XML string into a `StructType` with the
* specified schema. Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing XML data.
* @param schema
* the schema to use when parsing the XML string
* @group xml_funcs
* @since 4.0.0
*/
// scalastyle:on line.size.limit
def from_xml(e: Column, schema: Column): Column = {
from_xml(e, schema, Iterator.empty)
}
// scalastyle:off line.size.limit
/**
* (Java-specific) Parses a column containing a XML string into a `StructType` with the
* specified schema. Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing XML data.
* @param schema
* the schema to use when parsing the XML string
* @param options
* options to control how the XML is parsed. accepts the same options and the XML data source.
* See Data
* Source Option in the version you use.
* @group xml_funcs
* @since 4.0.0
*/
// scalastyle:on line.size.limit
def from_xml(e: Column, schema: Column, options: java.util.Map[String, String]): Column =
from_xml(e, schema, options.asScala.iterator)
/**
* Parses a column containing a XML string into the data type corresponding to the specified
* schema. Returns `null`, in the case of an unparseable string.
*
* @param e
* a string column containing XML data.
* @param schema
* the schema to use when parsing the XML string
*
* @group xml_funcs
* @since 4.0.0
*/
def from_xml(e: Column, schema: StructType): Column =
from_xml(e, schema, Map.empty[String, String].asJava)
private def from_xml(e: Column, schema: Column, options: Iterator[(String, String)]): Column = {
Column.fnWithOptions("from_xml", options, e, schema)
}
/**
* Parses a XML string and infers its schema in DDL format.
*
* @param xml
* a XML string.
* @group xml_funcs
* @since 4.0.0
*/
def schema_of_xml(xml: String): Column = schema_of_xml(lit(xml))
/**
* Parses a XML string and infers its schema in DDL format.
*
* @param xml
* a foldable string column containing a XML string.
* @group xml_funcs
* @since 4.0.0
*/
def schema_of_xml(xml: Column): Column = Column.fn("schema_of_xml", xml)
// scalastyle:off line.size.limit
/**
* Parses a XML string and infers its schema in DDL format using options.
*
* @param xml
* a foldable string column containing XML data.
* @param options
* options to control how the xml is parsed. accepts the same options and the XML data source.
* See Data
* Source Option in the version you use.
* @return
* a column with string literal containing schema in DDL format.
* @group xml_funcs
* @since 4.0.0
*/
// scalastyle:on line.size.limit
def schema_of_xml(xml: Column, options: java.util.Map[String, String]): Column =
Column.fnWithOptions("schema_of_xml", options.asScala.iterator, xml)
// scalastyle:off line.size.limit
/**
* (Java-specific) Converts a column containing a `StructType` into a XML string with the
* specified schema. Throws an exception, in the case of an unsupported type.
*
* @param e
* a column containing a struct.
* @param options
* options to control how the struct column is converted into a XML string. It accepts the
* same options as the XML data source. See Data
* Source Option in the version you use.
* @group xml_funcs
* @since 4.0.0
*/
// scalastyle:on line.size.limit
def to_xml(e: Column, options: java.util.Map[String, String]): Column =
Column.fnWithOptions("to_xml", options.asScala.iterator, e)
/**
* Converts a column containing a `StructType` into a XML string with the specified schema.
* Throws an exception, in the case of an unsupported type.
*
* @param e
* a column containing a struct.
* @group xml_funcs
* @since 4.0.0
*/
def to_xml(e: Column): Column = to_xml(e, Map.empty[String, String].asJava)
/**
* (Java-specific) A transform for timestamps and dates to partition data into years.
*
* @group partition_transforms
* @since 3.0.0
*/
def years(e: Column): Column = partitioning.years(e)
/**
* (Java-specific) A transform for timestamps and dates to partition data into months.
*
* @group partition_transforms
* @since 3.0.0
*/
def months(e: Column): Column = partitioning.months(e)
/**
* (Java-specific) A transform for timestamps and dates to partition data into days.
*
* @group partition_transforms
* @since 3.0.0
*/
def days(e: Column): Column = partitioning.days(e)
/**
* Returns a string array of values within the nodes of xml that match the XPath expression.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath(xml: Column, path: Column): Column =
Column.fn("xpath", xml, path)
/**
* Returns true if the XPath expression evaluates to true, or if a matching node is found.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath_boolean(xml: Column, path: Column): Column =
Column.fn("xpath_boolean", xml, path)
/**
* Returns a double value, the value zero if no match is found, or NaN if a match is found but
* the value is non-numeric.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath_double(xml: Column, path: Column): Column =
Column.fn("xpath_double", xml, path)
/**
* Returns a double value, the value zero if no match is found, or NaN if a match is found but
* the value is non-numeric.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath_number(xml: Column, path: Column): Column =
Column.fn("xpath_number", xml, path)
/**
* Returns a float value, the value zero if no match is found, or NaN if a match is found but
* the value is non-numeric.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath_float(xml: Column, path: Column): Column =
Column.fn("xpath_float", xml, path)
/**
* Returns an integer value, or the value zero if no match is found, or a match is found but the
* value is non-numeric.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath_int(xml: Column, path: Column): Column =
Column.fn("xpath_int", xml, path)
/**
* Returns a long integer value, or the value zero if no match is found, or a match is found but
* the value is non-numeric.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath_long(xml: Column, path: Column): Column =
Column.fn("xpath_long", xml, path)
/**
* Returns a short integer value, or the value zero if no match is found, or a match is found
* but the value is non-numeric.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath_short(xml: Column, path: Column): Column =
Column.fn("xpath_short", xml, path)
/**
* Returns the text contents of the first xml node that matches the XPath expression.
*
* @group xml_funcs
* @since 3.5.0
*/
def xpath_string(xml: Column, path: Column): Column =
Column.fn("xpath_string", xml, path)
/**
* (Java-specific) A transform for timestamps to partition data into hours.
*
* @group partition_transforms
* @since 3.0.0
*/
def hours(e: Column): Column = partitioning.hours(e)
/**
* Converts the timestamp without time zone `sourceTs` from the `sourceTz` time zone to
* `targetTz`.
*
* @param sourceTz
* the time zone for the input timestamp. If it is missed, the current session time zone is
* used as the source time zone.
* @param targetTz
* the time zone to which the input timestamp should be converted.
* @param sourceTs
* a timestamp without time zone.
* @group datetime_funcs
* @since 3.5.0
*/
def convert_timezone(sourceTz: Column, targetTz: Column, sourceTs: Column): Column =
Column.fn("convert_timezone", sourceTz, targetTz, sourceTs)
/**
* Converts the timestamp without time zone `sourceTs` from the current time zone to `targetTz`.
*
* @param targetTz
* the time zone to which the input timestamp should be converted.
* @param sourceTs
* a timestamp without time zone.
* @group datetime_funcs
* @since 3.5.0
*/
def convert_timezone(targetTz: Column, sourceTs: Column): Column =
Column.fn("convert_timezone", targetTz, sourceTs)
/**
* Make DayTimeIntervalType duration from days, hours, mins and secs.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_dt_interval(days: Column, hours: Column, mins: Column, secs: Column): Column =
Column.fn("make_dt_interval", days, hours, mins, secs)
/**
* Make DayTimeIntervalType duration from days, hours and mins.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_dt_interval(days: Column, hours: Column, mins: Column): Column =
Column.fn("make_dt_interval", days, hours, mins)
/**
* Make DayTimeIntervalType duration from days and hours.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_dt_interval(days: Column, hours: Column): Column =
Column.fn("make_dt_interval", days, hours)
/**
* Make DayTimeIntervalType duration from days.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_dt_interval(days: Column): Column =
Column.fn("make_dt_interval", days)
/**
* Make DayTimeIntervalType duration.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_dt_interval(): Column =
Column.fn("make_dt_interval")
/**
* Make interval from years, months, weeks, days, hours, mins and secs.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_interval(
years: Column,
months: Column,
weeks: Column,
days: Column,
hours: Column,
mins: Column,
secs: Column): Column =
Column.fn("make_interval", years, months, weeks, days, hours, mins, secs)
/**
* Make interval from years, months, weeks, days, hours and mins.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_interval(
years: Column,
months: Column,
weeks: Column,
days: Column,
hours: Column,
mins: Column): Column =
Column.fn("make_interval", years, months, weeks, days, hours, mins)
/**
* Make interval from years, months, weeks, days and hours.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_interval(
years: Column,
months: Column,
weeks: Column,
days: Column,
hours: Column): Column =
Column.fn("make_interval", years, months, weeks, days, hours)
/**
* Make interval from years, months, weeks and days.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_interval(years: Column, months: Column, weeks: Column, days: Column): Column =
Column.fn("make_interval", years, months, weeks, days)
/**
* Make interval from years, months and weeks.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_interval(years: Column, months: Column, weeks: Column): Column =
Column.fn("make_interval", years, months, weeks)
/**
* Make interval from years and months.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_interval(years: Column, months: Column): Column =
Column.fn("make_interval", years, months)
/**
* Make interval from years.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_interval(years: Column): Column =
Column.fn("make_interval", years)
/**
* Make interval.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_interval(): Column =
Column.fn("make_interval")
/**
* Create timestamp from years, months, days, hours, mins, secs and timezone fields. The result
* data type is consistent with the value of configuration `spark.sql.timestampType`. If the
* configuration `spark.sql.ansi.enabled` is false, the function returns NULL on invalid inputs.
* Otherwise, it will throw an error instead.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_timestamp(
years: Column,
months: Column,
days: Column,
hours: Column,
mins: Column,
secs: Column,
timezone: Column): Column =
Column.fn("make_timestamp", years, months, days, hours, mins, secs, timezone)
/**
* Create timestamp from years, months, days, hours, mins and secs fields. The result data type
* is consistent with the value of configuration `spark.sql.timestampType`. If the configuration
* `spark.sql.ansi.enabled` is false, the function returns NULL on invalid inputs. Otherwise, it
* will throw an error instead.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_timestamp(
years: Column,
months: Column,
days: Column,
hours: Column,
mins: Column,
secs: Column): Column =
Column.fn("make_timestamp", years, months, days, hours, mins, secs)
/**
* Create the current timestamp with local time zone from years, months, days, hours, mins, secs
* and timezone fields. If the configuration `spark.sql.ansi.enabled` is false, the function
* returns NULL on invalid inputs. Otherwise, it will throw an error instead.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_timestamp_ltz(
years: Column,
months: Column,
days: Column,
hours: Column,
mins: Column,
secs: Column,
timezone: Column): Column =
Column.fn("make_timestamp_ltz", years, months, days, hours, mins, secs, timezone)
/**
* Create the current timestamp with local time zone from years, months, days, hours, mins and
* secs fields. If the configuration `spark.sql.ansi.enabled` is false, the function returns
* NULL on invalid inputs. Otherwise, it will throw an error instead.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_timestamp_ltz(
years: Column,
months: Column,
days: Column,
hours: Column,
mins: Column,
secs: Column): Column =
Column.fn("make_timestamp_ltz", years, months, days, hours, mins, secs)
/**
* Create local date-time from years, months, days, hours, mins, secs fields. If the
* configuration `spark.sql.ansi.enabled` is false, the function returns NULL on invalid inputs.
* Otherwise, it will throw an error instead.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_timestamp_ntz(
years: Column,
months: Column,
days: Column,
hours: Column,
mins: Column,
secs: Column): Column =
Column.fn("make_timestamp_ntz", years, months, days, hours, mins, secs)
/**
* Make year-month interval from years, months.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_ym_interval(years: Column, months: Column): Column =
Column.fn("make_ym_interval", years, months)
/**
* Make year-month interval from years.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_ym_interval(years: Column): Column = Column.fn("make_ym_interval", years)
/**
* Make year-month interval.
*
* @group datetime_funcs
* @since 3.5.0
*/
def make_ym_interval(): Column = Column.fn("make_ym_interval")
/**
* (Java-specific) A transform for any type that partitions by a hash of the input column.
*
* @group partition_transforms
* @since 3.0.0
*/
def bucket(numBuckets: Column, e: Column): Column = partitioning.bucket(numBuckets, e)
/**
* (Java-specific) A transform for any type that partitions by a hash of the input column.
*
* @group partition_transforms
* @since 3.0.0
*/
def bucket(numBuckets: Int, e: Column): Column = partitioning.bucket(numBuckets, e)
//////////////////////////////////////////////////////////////////////////////////////////////
// Predicates functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns `col2` if `col1` is null, or `col1` otherwise.
*
* @group conditional_funcs
* @since 3.5.0
*/
def ifnull(col1: Column, col2: Column): Column = Column.fn("ifnull", col1, col2)
/**
* Returns true if `col` is not null, or false otherwise.
*
* @group predicate_funcs
* @since 3.5.0
*/
def isnotnull(col: Column): Column = Column.fn("isnotnull", col)
/**
* Returns same result as the EQUAL(=) operator for non-null operands, but returns true if both
* are null, false if one of the them is null.
*
* @group predicate_funcs
* @since 3.5.0
*/
def equal_null(col1: Column, col2: Column): Column = Column.fn("equal_null", col1, col2)
/**
* Returns null if `col1` equals to `col2`, or `col1` otherwise.
*
* @group conditional_funcs
* @since 3.5.0
*/
def nullif(col1: Column, col2: Column): Column = Column.fn("nullif", col1, col2)
/**
* Returns null if `col` is equal to zero, or `col` otherwise.
*
* @group conditional_funcs
* @since 4.0.0
*/
def nullifzero(col: Column): Column = Column.fn("nullifzero", col)
/**
* Returns `col2` if `col1` is null, or `col1` otherwise.
*
* @group conditional_funcs
* @since 3.5.0
*/
def nvl(col1: Column, col2: Column): Column = Column.fn("nvl", col1, col2)
/**
* Returns `col2` if `col1` is not null, or `col3` otherwise.
*
* @group conditional_funcs
* @since 3.5.0
*/
def nvl2(col1: Column, col2: Column, col3: Column): Column = Column.fn("nvl2", col1, col2, col3)
/**
* Returns zero if `col` is null, or `col` otherwise.
*
* @group conditional_funcs
* @since 4.0.0
*/
def zeroifnull(col: Column): Column = Column.fn("zeroifnull", col)
// scalastyle:off line.size.limit
// scalastyle:off parameter.number
/* Use the following code to generate:
(0 to 10).foreach { x =>
val types = (1 to x).foldRight("RT")((i, s) => s"A$i, $s")
val typeSeq = "RT" +: (1 to x).map(i => s"A$i")
val typeTags = typeSeq.map(t => s"$t: TypeTag").mkString(", ")
val implicitTypeTags = typeSeq.map(t => s"implicitly[TypeTag[$t]]").mkString(", ")
println(s"""
|/**
| * Defines a Scala closure of $x arguments as user-defined function (UDF).
| * The data types are automatically inferred based on the Scala closure's
| * signature. By default the returned UDF is deterministic. To change it to
| * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
| *
| * @group udf_funcs
| * @since 1.3.0
| */
|def udf[$typeTags](f: Function$x[$types]): UserDefinedFunction = {
| SparkUserDefinedFunction(f, $implicitTypeTags)
|}""".stripMargin)
}
(0 to 10).foreach { i =>
val extTypeArgs = (0 to i).map(_ => "_").mkString(", ")
println(s"""
|/**
| * Defines a Java UDF$i instance as user-defined function (UDF).
| * The caller must specify the output data type, and there is no automatic input type coercion.
| * By default the returned UDF is deterministic. To change it to nondeterministic, call the
| * API `UserDefinedFunction.asNondeterministic()`.
| *
| * @group udf_funcs
| * @since 2.3.0
| */
|def udf(f: UDF$i[$extTypeArgs], returnType: DataType): UserDefinedFunction = {
| SparkUserDefinedFunction(ToScalaUDF(f), returnType, $i)
|}""".stripMargin)
}
*/
//////////////////////////////////////////////////////////////////////////////////////////////
// Scala UDF functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Obtains a `UserDefinedFunction` that wraps the given `Aggregator` so that it may be used with
* untyped Data Frames.
* {{{
* val agg = // Aggregator[IN, BUF, OUT]
*
* // declare a UDF based on agg
* val aggUDF = udaf(agg)
* val aggData = df.agg(aggUDF($"colname"))
*
* // register agg as a named function
* spark.udf.register("myAggName", udaf(agg))
* }}}
*
* @tparam IN
* the aggregator input type
* @tparam BUF
* the aggregating buffer type
* @tparam OUT
* the finalized output type
*
* @param agg
* the typed Aggregator
*
* @return
* a UserDefinedFunction that can be used as an aggregating expression.
*
* @group udf_funcs
* @note
* The input encoder is inferred from the input type IN.
*/
def udaf[IN: TypeTag, BUF, OUT](agg: Aggregator[IN, BUF, OUT]): UserDefinedFunction = {
udaf(agg, ScalaReflection.encoderFor[IN])
}
/**
* Obtains a `UserDefinedFunction` that wraps the given `Aggregator` so that it may be used with
* untyped Data Frames.
* {{{
* Aggregator agg = // custom Aggregator
* Encoder enc = // input encoder
*
* // declare a UDF based on agg
* UserDefinedFunction aggUDF = udaf(agg, enc)
* DataFrame aggData = df.agg(aggUDF($"colname"))
*
* // register agg as a named function
* spark.udf.register("myAggName", udaf(agg, enc))
* }}}
*
* @tparam IN
* the aggregator input type
* @tparam BUF
* the aggregating buffer type
* @tparam OUT
* the finalized output type
*
* @param agg
* the typed Aggregator
* @param inputEncoder
* a specific input encoder to use
*
* @return
* a UserDefinedFunction that can be used as an aggregating expression
*
* @group udf_funcs
* @note
* This overloading takes an explicit input encoder, to support UDAF declarations in Java.
*/
def udaf[IN, BUF, OUT](
agg: Aggregator[IN, BUF, OUT],
inputEncoder: Encoder[IN]): UserDefinedFunction = {
UserDefinedAggregator(agg, inputEncoder)
}
/**
* Defines a Scala closure of 0 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag](f: Function0[RT]): UserDefinedFunction = {
SparkUserDefinedFunction(f, implicitly[TypeTag[RT]])
}
/**
* Defines a Scala closure of 1 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag](f: Function1[A1, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(f, implicitly[TypeTag[RT]], implicitly[TypeTag[A1]])
}
/**
* Defines a Scala closure of 2 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag](
f: Function2[A1, A2, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]])
}
/**
* Defines a Scala closure of 3 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag](
f: Function3[A1, A2, A3, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]],
implicitly[TypeTag[A3]])
}
/**
* Defines a Scala closure of 4 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag](
f: Function4[A1, A2, A3, A4, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]],
implicitly[TypeTag[A3]],
implicitly[TypeTag[A4]])
}
/**
* Defines a Scala closure of 5 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag](
f: Function5[A1, A2, A3, A4, A5, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]],
implicitly[TypeTag[A3]],
implicitly[TypeTag[A4]],
implicitly[TypeTag[A5]])
}
/**
* Defines a Scala closure of 6 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[
RT: TypeTag,
A1: TypeTag,
A2: TypeTag,
A3: TypeTag,
A4: TypeTag,
A5: TypeTag,
A6: TypeTag](f: Function6[A1, A2, A3, A4, A5, A6, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]],
implicitly[TypeTag[A3]],
implicitly[TypeTag[A4]],
implicitly[TypeTag[A5]],
implicitly[TypeTag[A6]])
}
/**
* Defines a Scala closure of 7 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[
RT: TypeTag,
A1: TypeTag,
A2: TypeTag,
A3: TypeTag,
A4: TypeTag,
A5: TypeTag,
A6: TypeTag,
A7: TypeTag](f: Function7[A1, A2, A3, A4, A5, A6, A7, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]],
implicitly[TypeTag[A3]],
implicitly[TypeTag[A4]],
implicitly[TypeTag[A5]],
implicitly[TypeTag[A6]],
implicitly[TypeTag[A7]])
}
/**
* Defines a Scala closure of 8 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[
RT: TypeTag,
A1: TypeTag,
A2: TypeTag,
A3: TypeTag,
A4: TypeTag,
A5: TypeTag,
A6: TypeTag,
A7: TypeTag,
A8: TypeTag](f: Function8[A1, A2, A3, A4, A5, A6, A7, A8, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]],
implicitly[TypeTag[A3]],
implicitly[TypeTag[A4]],
implicitly[TypeTag[A5]],
implicitly[TypeTag[A6]],
implicitly[TypeTag[A7]],
implicitly[TypeTag[A8]])
}
/**
* Defines a Scala closure of 9 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[
RT: TypeTag,
A1: TypeTag,
A2: TypeTag,
A3: TypeTag,
A4: TypeTag,
A5: TypeTag,
A6: TypeTag,
A7: TypeTag,
A8: TypeTag,
A9: TypeTag](f: Function9[A1, A2, A3, A4, A5, A6, A7, A8, A9, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]],
implicitly[TypeTag[A3]],
implicitly[TypeTag[A4]],
implicitly[TypeTag[A5]],
implicitly[TypeTag[A6]],
implicitly[TypeTag[A7]],
implicitly[TypeTag[A8]],
implicitly[TypeTag[A9]])
}
/**
* Defines a Scala closure of 10 arguments as user-defined function (UDF). The data types are
* automatically inferred based on the Scala closure's signature. By default the returned UDF is
* deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[
RT: TypeTag,
A1: TypeTag,
A2: TypeTag,
A3: TypeTag,
A4: TypeTag,
A5: TypeTag,
A6: TypeTag,
A7: TypeTag,
A8: TypeTag,
A9: TypeTag,
A10: TypeTag](
f: Function10[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, RT]): UserDefinedFunction = {
SparkUserDefinedFunction(
f,
implicitly[TypeTag[RT]],
implicitly[TypeTag[A1]],
implicitly[TypeTag[A2]],
implicitly[TypeTag[A3]],
implicitly[TypeTag[A4]],
implicitly[TypeTag[A5]],
implicitly[TypeTag[A6]],
implicitly[TypeTag[A7]],
implicitly[TypeTag[A8]],
implicitly[TypeTag[A9]],
implicitly[TypeTag[A10]])
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Java UDF functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Defines a Java UDF0 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF0[_], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 0)
}
/**
* Defines a Java UDF1 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF1[_, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 1)
}
/**
* Defines a Java UDF2 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF2[_, _, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 2)
}
/**
* Defines a Java UDF3 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF3[_, _, _, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 3)
}
/**
* Defines a Java UDF4 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF4[_, _, _, _, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 4)
}
/**
* Defines a Java UDF5 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF5[_, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 5)
}
/**
* Defines a Java UDF6 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF6[_, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 6)
}
/**
* Defines a Java UDF7 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF7[_, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 7)
}
/**
* Defines a Java UDF8 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF8[_, _, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 8)
}
/**
* Defines a Java UDF9 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF9[_, _, _, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 9)
}
/**
* Defines a Java UDF10 instance as user-defined function (UDF). The caller must specify the
* output data type, and there is no automatic input type coercion. By default the returned UDF
* is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(
f: UDF10[_, _, _, _, _, _, _, _, _, _, _],
returnType: DataType): UserDefinedFunction = {
SparkUserDefinedFunction(ToScalaUDF(f), returnType, 10)
}
// scalastyle:on parameter.number
// scalastyle:on line.size.limit
/**
* Defines a deterministic user-defined function (UDF) using a Scala closure. For this variant,
* the caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`.
*
* Note that, although the Scala closure can have primitive-type function argument, it doesn't
* work well with null values. Because the Scala closure is passed in as Any type, there is no
* type information for the function arguments. Without the type information, Spark may blindly
* pass null to the Scala closure with primitive-type argument, and the closure will see the
* default value of the Java type for the null argument, e.g. `udf((x: Int) => x, IntegerType)`,
* the result is 0 for null input.
*
* @param f
* A closure in Scala
* @param dataType
* The output data type of the UDF
*
* @group udf_funcs
* @since 2.0.0
*/
@deprecated(
"Scala `udf` method with return type parameter is deprecated. " +
"Please use Scala `udf` method without return type parameter.",
"3.0.0")
def udf(f: AnyRef, dataType: DataType): UserDefinedFunction = {
if (!SqlApiConf.get.legacyAllowUntypedScalaUDFs) {
throw CompilationErrors.usingUntypedScalaUDFError()
}
SparkUserDefinedFunction(f, dataType, inputEncoders = Nil)
}
/**
* Call an user-defined function.
*
* @group udf_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
@deprecated("Use call_udf")
def callUDF(udfName: String, cols: Column*): Column = call_function(udfName, cols: _*)
/**
* Call an user-defined function. Example:
* {{{
* import org.apache.spark.sql._
*
* val df = Seq(("id1", 1), ("id2", 4), ("id3", 5)).toDF("id", "value")
* val spark = df.sparkSession
* spark.udf.register("simpleUDF", (v: Int) => v * v)
* df.select($"id", call_udf("simpleUDF", $"value"))
* }}}
*
* @group udf_funcs
* @since 3.2.0
*/
@scala.annotation.varargs
def call_udf(udfName: String, cols: Column*): Column = call_function(udfName, cols: _*)
/**
* Call a SQL function.
*
* @param funcName
* function name that follows the SQL identifier syntax (can be quoted, can be qualified)
* @param cols
* the expression parameters of function
* @group normal_funcs
* @since 3.5.0
*/
@scala.annotation.varargs
def call_function(funcName: String, cols: Column*): Column = {
Column(internal.UnresolvedFunction(funcName, cols.map(_.node), isUserDefinedFunction = true))
}
/**
* Unwrap UDT data type column into its underlying type.
* @group udf_funcs
* @since 3.4.0
*/
def unwrap_udt(column: Column): Column = Column.internalFn("unwrap_udt", column)
// scalastyle:off
// TODO(SPARK-45970): Use @static annotation so Java can access to those
// API in the same way. Once we land this fix, should deprecate
// functions.hours, days, months, years and bucket.
object partitioning {
// scalastyle:on
/**
* (Scala-specific) A transform for timestamps and dates to partition data into years.
*
* @group partition_transforms
* @since 4.0.0
*/
def years(e: Column): Column = Column.internalFn("years", e)
/**
* (Scala-specific) A transform for timestamps and dates to partition data into months.
*
* @group partition_transforms
* @since 4.0.0
*/
def months(e: Column): Column = Column.internalFn("months", e)
/**
* (Scala-specific) A transform for timestamps and dates to partition data into days.
*
* @group partition_transforms
* @since 4.0.0
*/
def days(e: Column): Column = Column.internalFn("days", e)
/**
* (Scala-specific) A transform for timestamps to partition data into hours.
*
* @group partition_transforms
* @since 4.0.0
*/
def hours(e: Column): Column = Column.internalFn("hours", e)
/**
* (Scala-specific) A transform for any type that partitions by a hash of the input column.
*
* @group partition_transforms
* @since 4.0.0
*/
def bucket(numBuckets: Column, e: Column): Column = Column.internalFn("bucket", numBuckets, e)
/**
* (Scala-specific) A transform for any type that partitions by a hash of the input column.
*
* @group partition_transforms
* @since 4.0.0
*/
def bucket(numBuckets: Int, e: Column): Column = bucket(lit(numBuckets), e)
}
}