org.apache.spark.sql.kafka010.KafkaBatchPartitionReader.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.kafka010
import java.{util => ju}
import org.apache.spark.TaskContext
import org.apache.spark.internal.{Logging, MDC}
import org.apache.spark.internal.LogKeys._
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.UnsafeRow
import org.apache.spark.sql.connector.metric.CustomTaskMetric
import org.apache.spark.sql.connector.read.{InputPartition, PartitionReader, PartitionReaderFactory}
import org.apache.spark.sql.execution.streaming.{MicroBatchExecution, StreamExecution}
import org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer
/** A [[InputPartition]] for reading Kafka data in a batch based streaming query. */
private[kafka010] case class KafkaBatchInputPartition(
offsetRange: KafkaOffsetRange,
executorKafkaParams: ju.Map[String, Object],
pollTimeoutMs: Long,
failOnDataLoss: Boolean,
includeHeaders: Boolean) extends InputPartition {
override def preferredLocations(): Array[String] = {
offsetRange.preferredLoc.map(Array(_)).getOrElse(Array())
}
}
private[kafka010] object KafkaBatchReaderFactory extends PartitionReaderFactory with Logging {
override def createReader(partition: InputPartition): PartitionReader[InternalRow] = {
val p = partition.asInstanceOf[KafkaBatchInputPartition]
val taskCtx = TaskContext.get()
val queryId = taskCtx.getLocalProperty(StreamExecution.QUERY_ID_KEY)
val batchId = taskCtx.getLocalProperty(MicroBatchExecution.BATCH_ID_KEY)
logInfo(log"Creating Kafka reader " +
log"topicPartition=${MDC(TOPIC_PARTITION, p.offsetRange.topicPartition)} " +
log"fromOffset=${MDC(FROM_OFFSET, p.offsetRange.fromOffset)}} " +
log"untilOffset=${MDC(UNTIL_OFFSET, p.offsetRange.untilOffset)}, " +
log"for query queryId=${MDC(QUERY_ID, queryId)} batchId=${MDC(BATCH_ID, batchId)} " +
log"taskId=${MDC(TASK_ATTEMPT_ID, TaskContext.get().taskAttemptId())} " +
log"partitionId=${MDC(PARTITION_ID, TaskContext.get().partitionId())}")
KafkaBatchPartitionReader(p.offsetRange, p.executorKafkaParams, p.pollTimeoutMs,
p.failOnDataLoss, p.includeHeaders)
}
}
/** A [[PartitionReader]] for reading Kafka data in a micro-batch streaming query. */
private case class KafkaBatchPartitionReader(
offsetRange: KafkaOffsetRange,
executorKafkaParams: ju.Map[String, Object],
pollTimeoutMs: Long,
failOnDataLoss: Boolean,
includeHeaders: Boolean) extends PartitionReader[InternalRow] with Logging {
private val consumer = KafkaDataConsumer.acquire(offsetRange.topicPartition, executorKafkaParams)
private val rangeToRead = resolveRange(offsetRange)
private val unsafeRowProjector = new KafkaRecordToRowConverter()
.toUnsafeRowProjector(includeHeaders)
private var nextOffset = rangeToRead.fromOffset
private var nextRow: UnsafeRow = _
override def next(): Boolean = {
if (nextOffset < rangeToRead.untilOffset) {
val record = consumer.get(nextOffset, rangeToRead.untilOffset, pollTimeoutMs, failOnDataLoss)
if (record != null) {
nextRow = unsafeRowProjector(record)
nextOffset = record.offset + 1
true
} else {
false
}
} else {
false
}
}
override def get(): UnsafeRow = {
assert(nextRow != null)
nextRow
}
override def close(): Unit = {
consumer.release()
}
private def resolveRange(range: KafkaOffsetRange): KafkaOffsetRange = {
if (range.fromOffset < 0 || range.untilOffset < 0) {
// Late bind the offset range
val availableOffsetRange = consumer.getAvailableOffsetRange()
val fromOffset = if (range.fromOffset < 0) {
assert(range.fromOffset == KafkaOffsetRangeLimit.EARLIEST,
s"earliest offset ${range.fromOffset} does not equal ${KafkaOffsetRangeLimit.EARLIEST}")
availableOffsetRange.earliest
} else {
range.fromOffset
}
val untilOffset = if (range.untilOffset < 0) {
assert(range.untilOffset == KafkaOffsetRangeLimit.LATEST,
s"latest offset ${range.untilOffset} does not equal ${KafkaOffsetRangeLimit.LATEST}")
availableOffsetRange.latest
} else {
range.untilOffset
}
KafkaOffsetRange(range.topicPartition, fromOffset, untilOffset, None)
} else {
range
}
}
override def currentMetricsValues(): Array[CustomTaskMetric] = {
val offsetOutOfRange = new CustomTaskMetric {
override def name(): String = "offsetOutOfRange"
override def value(): Long = consumer.getNumOffsetOutOfRange()
}
val dataLoss = new CustomTaskMetric {
override def name(): String = "dataLoss"
override def value(): Long = consumer.getNumDataLoss()
}
Array(offsetOutOfRange, dataLoss)
}
}