org.apache.spark.sql.execution.SparkOptimizer.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import org.apache.spark.sql.ExperimentalMethods
import org.apache.spark.sql.catalyst.catalog.SessionCatalog
import org.apache.spark.sql.catalyst.optimizer.Optimizer
import org.apache.spark.sql.execution.datasources.PruneFileSourcePartitions
import org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaPruning
import org.apache.spark.sql.execution.python.{ExtractPythonUDFFromAggregate, ExtractPythonUDFs}
class SparkOptimizer(
catalog: SessionCatalog,
experimentalMethods: ExperimentalMethods)
extends Optimizer(catalog) {
override def defaultBatches: Seq[Batch] = (preOptimizationBatches ++ super.defaultBatches :+
Batch("Optimize Metadata Only Query", Once, OptimizeMetadataOnlyQuery(catalog)) :+
Batch("Extract Python UDFs", Once,
Seq(ExtractPythonUDFFromAggregate, ExtractPythonUDFs): _*) :+
Batch("Prune File Source Table Partitions", Once, PruneFileSourcePartitions) :+
Batch("Parquet Schema Pruning", Once, ParquetSchemaPruning)) ++
postHocOptimizationBatches :+
Batch("User Provided Optimizers", fixedPoint, experimentalMethods.extraOptimizations: _*)
override def nonExcludableRules: Seq[String] =
super.nonExcludableRules :+ ExtractPythonUDFFromAggregate.ruleName
/**
* Optimization batches that are executed before the regular optimization batches (also before
* the finish analysis batch).
*/
def preOptimizationBatches: Seq[Batch] = Nil
/**
* Optimization batches that are executed after the regular optimization batches, but before the
* batch executing the [[ExperimentalMethods]] optimizer rules. This hook can be used to add
* custom optimizer batches to the Spark optimizer.
*/
def postHocOptimizationBatches: Seq[Batch] = Nil
}