org.apache.spark.sql.functions.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import scala.collection.JavaConverters._
import scala.language.implicitConversions
import scala.reflect.runtime.universe.{typeTag, TypeTag}
import scala.util.Try
import scala.util.control.NonFatal
import org.apache.spark.annotation.InterfaceStability
import org.apache.spark.sql.api.java._
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.catalyst.analysis.{Star, UnresolvedFunction}
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.catalyst.plans.logical.{HintInfo, ResolvedHint}
import org.apache.spark.sql.execution.SparkSqlParser
import org.apache.spark.sql.expressions.{SparkUserDefinedFunction, UserDefinedFunction}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._
import org.apache.spark.util.Utils
/**
* Commonly used functions available for DataFrame operations. Using functions defined here provides
* a little bit more compile-time safety to make sure the function exists.
*
* Spark also includes more built-in functions that are less common and are not defined here.
* You can still access them (and all the functions defined here) using the `functions.expr()` API
* and calling them through a SQL expression string. You can find the entire list of functions
* at SQL API documentation.
*
* As an example, `isnan` is a function that is defined here. You can use `isnan(col("myCol"))`
* to invoke the `isnan` function. This way the programming language's compiler ensures `isnan`
* exists and is of the proper form. You can also use `expr("isnan(myCol)")` function to invoke the
* same function. In this case, Spark itself will ensure `isnan` exists when it analyzes the query.
*
* `regr_count` is an example of a function that is built-in but not defined here, because it is
* less commonly used. To invoke it, use `expr("regr_count(yCol, xCol)")`.
*
* @groupname udf_funcs UDF functions
* @groupname agg_funcs Aggregate functions
* @groupname datetime_funcs Date time functions
* @groupname sort_funcs Sorting functions
* @groupname normal_funcs Non-aggregate functions
* @groupname math_funcs Math functions
* @groupname misc_funcs Misc functions
* @groupname window_funcs Window functions
* @groupname string_funcs String functions
* @groupname collection_funcs Collection functions
* @groupname Ungrouped Support functions for DataFrames
* @since 1.3.0
*/
@InterfaceStability.Stable
// scalastyle:off
object functions {
// scalastyle:on
private def withExpr(expr: Expression): Column = Column(expr)
private def withAggregateFunction(
func: AggregateFunction,
isDistinct: Boolean = false): Column = {
Column(func.toAggregateExpression(isDistinct))
}
/**
* Returns a [[Column]] based on the given column name.
*
* @group normal_funcs
* @since 1.3.0
*/
def col(colName: String): Column = Column(colName)
/**
* Returns a [[Column]] based on the given column name. Alias of [[col]].
*
* @group normal_funcs
* @since 1.3.0
*/
def column(colName: String): Column = Column(colName)
/**
* Creates a [[Column]] of literal value.
*
* The passed in object is returned directly if it is already a [[Column]].
* If the object is a Scala Symbol, it is converted into a [[Column]] also.
* Otherwise, a new [[Column]] is created to represent the literal value.
*
* @group normal_funcs
* @since 1.3.0
*/
def lit(literal: Any): Column = typedLit(literal)
/**
* Creates a [[Column]] of literal value.
*
* The passed in object is returned directly if it is already a [[Column]].
* If the object is a Scala Symbol, it is converted into a [[Column]] also.
* Otherwise, a new [[Column]] is created to represent the literal value.
* The difference between this function and [[lit]] is that this function
* can handle parameterized scala types e.g.: List, Seq and Map.
*
* @group normal_funcs
* @since 2.2.0
*/
def typedLit[T : TypeTag](literal: T): Column = literal match {
case c: Column => c
case s: Symbol => new ColumnName(s.name)
case _ => Column(Literal.create(literal))
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Sort functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns a sort expression based on ascending order of the column.
* {{{
* df.sort(asc("dept"), desc("age"))
* }}}
*
* @group sort_funcs
* @since 1.3.0
*/
def asc(columnName: String): Column = Column(columnName).asc
/**
* Returns a sort expression based on ascending order of the column,
* and null values return before non-null values.
* {{{
* df.sort(asc_nulls_first("dept"), desc("age"))
* }}}
*
* @group sort_funcs
* @since 2.1.0
*/
def asc_nulls_first(columnName: String): Column = Column(columnName).asc_nulls_first
/**
* Returns a sort expression based on ascending order of the column,
* and null values appear after non-null values.
* {{{
* df.sort(asc_nulls_last("dept"), desc("age"))
* }}}
*
* @group sort_funcs
* @since 2.1.0
*/
def asc_nulls_last(columnName: String): Column = Column(columnName).asc_nulls_last
/**
* Returns a sort expression based on the descending order of the column.
* {{{
* df.sort(asc("dept"), desc("age"))
* }}}
*
* @group sort_funcs
* @since 1.3.0
*/
def desc(columnName: String): Column = Column(columnName).desc
/**
* Returns a sort expression based on the descending order of the column,
* and null values appear before non-null values.
* {{{
* df.sort(asc("dept"), desc_nulls_first("age"))
* }}}
*
* @group sort_funcs
* @since 2.1.0
*/
def desc_nulls_first(columnName: String): Column = Column(columnName).desc_nulls_first
/**
* Returns a sort expression based on the descending order of the column,
* and null values appear after non-null values.
* {{{
* df.sort(asc("dept"), desc_nulls_last("age"))
* }}}
*
* @group sort_funcs
* @since 2.1.0
*/
def desc_nulls_last(columnName: String): Column = Column(columnName).desc_nulls_last
//////////////////////////////////////////////////////////////////////////////////////////////
// Aggregate functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use approx_count_distinct", "2.1.0")
def approxCountDistinct(e: Column): Column = approx_count_distinct(e)
/**
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use approx_count_distinct", "2.1.0")
def approxCountDistinct(columnName: String): Column = approx_count_distinct(columnName)
/**
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use approx_count_distinct", "2.1.0")
def approxCountDistinct(e: Column, rsd: Double): Column = approx_count_distinct(e, rsd)
/**
* @group agg_funcs
* @since 1.3.0
*/
@deprecated("Use approx_count_distinct", "2.1.0")
def approxCountDistinct(columnName: String, rsd: Double): Column = {
approx_count_distinct(Column(columnName), rsd)
}
/**
* Aggregate function: returns the approximate number of distinct items in a group.
*
* @group agg_funcs
* @since 2.1.0
*/
def approx_count_distinct(e: Column): Column = withAggregateFunction {
HyperLogLogPlusPlus(e.expr)
}
/**
* Aggregate function: returns the approximate number of distinct items in a group.
*
* @group agg_funcs
* @since 2.1.0
*/
def approx_count_distinct(columnName: String): Column = approx_count_distinct(column(columnName))
/**
* Aggregate function: returns the approximate number of distinct items in a group.
*
* @param rsd maximum estimation error allowed (default = 0.05)
*
* @group agg_funcs
* @since 2.1.0
*/
def approx_count_distinct(e: Column, rsd: Double): Column = withAggregateFunction {
HyperLogLogPlusPlus(e.expr, rsd, 0, 0)
}
/**
* Aggregate function: returns the approximate number of distinct items in a group.
*
* @param rsd maximum estimation error allowed (default = 0.05)
*
* @group agg_funcs
* @since 2.1.0
*/
def approx_count_distinct(columnName: String, rsd: Double): Column = {
approx_count_distinct(Column(columnName), rsd)
}
/**
* Aggregate function: returns the average of the values in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def avg(e: Column): Column = withAggregateFunction { Average(e.expr) }
/**
* Aggregate function: returns the average of the values in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def avg(columnName: String): Column = avg(Column(columnName))
/**
* Aggregate function: returns a list of objects with duplicates.
*
* @note The function is non-deterministic because the order of collected results depends
* on order of rows which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_list(e: Column): Column = withAggregateFunction { CollectList(e.expr) }
/**
* Aggregate function: returns a list of objects with duplicates.
*
* @note The function is non-deterministic because the order of collected results depends
* on order of rows which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_list(columnName: String): Column = collect_list(Column(columnName))
/**
* Aggregate function: returns a set of objects with duplicate elements eliminated.
*
* @note The function is non-deterministic because the order of collected results depends
* on order of rows which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_set(e: Column): Column = withAggregateFunction { CollectSet(e.expr) }
/**
* Aggregate function: returns a set of objects with duplicate elements eliminated.
*
* @note The function is non-deterministic because the order of collected results depends
* on order of rows which may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_set(columnName: String): Column = collect_set(Column(columnName))
/**
* Aggregate function: returns the Pearson Correlation Coefficient for two columns.
*
* @group agg_funcs
* @since 1.6.0
*/
def corr(column1: Column, column2: Column): Column = withAggregateFunction {
Corr(column1.expr, column2.expr)
}
/**
* Aggregate function: returns the Pearson Correlation Coefficient for two columns.
*
* @group agg_funcs
* @since 1.6.0
*/
def corr(columnName1: String, columnName2: String): Column = {
corr(Column(columnName1), Column(columnName2))
}
/**
* Aggregate function: returns the number of items in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def count(e: Column): Column = withAggregateFunction {
e.expr match {
// Turn count(*) into count(1)
case s: Star => Count(Literal(1))
case _ => Count(e.expr)
}
}
/**
* Aggregate function: returns the number of items in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def count(columnName: String): TypedColumn[Any, Long] =
count(Column(columnName)).as(ExpressionEncoder[Long]())
/**
* Aggregate function: returns the number of distinct items in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
@scala.annotation.varargs
def countDistinct(expr: Column, exprs: Column*): Column = {
withAggregateFunction(Count.apply((expr +: exprs).map(_.expr)), isDistinct = true)
}
/**
* Aggregate function: returns the number of distinct items in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
@scala.annotation.varargs
def countDistinct(columnName: String, columnNames: String*): Column =
countDistinct(Column(columnName), columnNames.map(Column.apply) : _*)
/**
* Aggregate function: returns the population covariance for two columns.
*
* @group agg_funcs
* @since 2.0.0
*/
def covar_pop(column1: Column, column2: Column): Column = withAggregateFunction {
CovPopulation(column1.expr, column2.expr)
}
/**
* Aggregate function: returns the population covariance for two columns.
*
* @group agg_funcs
* @since 2.0.0
*/
def covar_pop(columnName1: String, columnName2: String): Column = {
covar_pop(Column(columnName1), Column(columnName2))
}
/**
* Aggregate function: returns the sample covariance for two columns.
*
* @group agg_funcs
* @since 2.0.0
*/
def covar_samp(column1: Column, column2: Column): Column = withAggregateFunction {
CovSample(column1.expr, column2.expr)
}
/**
* Aggregate function: returns the sample covariance for two columns.
*
* @group agg_funcs
* @since 2.0.0
*/
def covar_samp(columnName1: String, columnName2: String): Column = {
covar_samp(Column(columnName1), Column(columnName2))
}
/**
* Aggregate function: returns the first value in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note The function is non-deterministic because its results depends on order of rows which
* may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 2.0.0
*/
def first(e: Column, ignoreNulls: Boolean): Column = withAggregateFunction {
new First(e.expr, ignoreNulls)
}
/**
* Aggregate function: returns the first value of a column in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note The function is non-deterministic because its results depends on order of rows which
* may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 2.0.0
*/
def first(columnName: String, ignoreNulls: Boolean): Column = {
first(Column(columnName), ignoreNulls)
}
/**
* Aggregate function: returns the first value in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note The function is non-deterministic because its results depends on order of rows which
* may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.3.0
*/
def first(e: Column): Column = first(e, ignoreNulls = false)
/**
* Aggregate function: returns the first value of a column in a group.
*
* The function by default returns the first values it sees. It will return the first non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note The function is non-deterministic because its results depends on order of rows which
* may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.3.0
*/
def first(columnName: String): Column = first(Column(columnName))
/**
* Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated
* or not, returns 1 for aggregated or 0 for not aggregated in the result set.
*
* @group agg_funcs
* @since 2.0.0
*/
def grouping(e: Column): Column = Column(Grouping(e.expr))
/**
* Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated
* or not, returns 1 for aggregated or 0 for not aggregated in the result set.
*
* @group agg_funcs
* @since 2.0.0
*/
def grouping(columnName: String): Column = grouping(Column(columnName))
/**
* Aggregate function: returns the level of grouping, equals to
*
* {{{
* (grouping(c1) <<; (n-1)) + (grouping(c2) <<; (n-2)) + ... + grouping(cn)
* }}}
*
* @note The list of columns should match with grouping columns exactly, or empty (means all the
* grouping columns).
*
* @group agg_funcs
* @since 2.0.0
*/
def grouping_id(cols: Column*): Column = Column(GroupingID(cols.map(_.expr)))
/**
* Aggregate function: returns the level of grouping, equals to
*
* {{{
* (grouping(c1) <<; (n-1)) + (grouping(c2) <<; (n-2)) + ... + grouping(cn)
* }}}
*
* @note The list of columns should match with grouping columns exactly.
*
* @group agg_funcs
* @since 2.0.0
*/
def grouping_id(colName: String, colNames: String*): Column = {
grouping_id((Seq(colName) ++ colNames).map(n => Column(n)) : _*)
}
/**
* Aggregate function: returns the kurtosis of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def kurtosis(e: Column): Column = withAggregateFunction { Kurtosis(e.expr) }
/**
* Aggregate function: returns the kurtosis of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def kurtosis(columnName: String): Column = kurtosis(Column(columnName))
/**
* Aggregate function: returns the last value in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note The function is non-deterministic because its results depends on order of rows which
* may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 2.0.0
*/
def last(e: Column, ignoreNulls: Boolean): Column = withAggregateFunction {
new Last(e.expr, ignoreNulls)
}
/**
* Aggregate function: returns the last value of the column in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note The function is non-deterministic because its results depends on order of rows which
* may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 2.0.0
*/
def last(columnName: String, ignoreNulls: Boolean): Column = {
last(Column(columnName), ignoreNulls)
}
/**
* Aggregate function: returns the last value in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note The function is non-deterministic because its results depends on order of rows which
* may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.3.0
*/
def last(e: Column): Column = last(e, ignoreNulls = false)
/**
* Aggregate function: returns the last value of the column in a group.
*
* The function by default returns the last values it sees. It will return the last non-null
* value it sees when ignoreNulls is set to true. If all values are null, then null is returned.
*
* @note The function is non-deterministic because its results depends on order of rows which
* may be non-deterministic after a shuffle.
*
* @group agg_funcs
* @since 1.3.0
*/
def last(columnName: String): Column = last(Column(columnName), ignoreNulls = false)
/**
* Aggregate function: returns the maximum value of the expression in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def max(e: Column): Column = withAggregateFunction { Max(e.expr) }
/**
* Aggregate function: returns the maximum value of the column in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def max(columnName: String): Column = max(Column(columnName))
/**
* Aggregate function: returns the average of the values in a group.
* Alias for avg.
*
* @group agg_funcs
* @since 1.4.0
*/
def mean(e: Column): Column = avg(e)
/**
* Aggregate function: returns the average of the values in a group.
* Alias for avg.
*
* @group agg_funcs
* @since 1.4.0
*/
def mean(columnName: String): Column = avg(columnName)
/**
* Aggregate function: returns the minimum value of the expression in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def min(e: Column): Column = withAggregateFunction { Min(e.expr) }
/**
* Aggregate function: returns the minimum value of the column in a group.
*
* @group agg_funcs
* @since 1.3.0
*/
def min(columnName: String): Column = min(Column(columnName))
/**
* Aggregate function: returns the skewness of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def skewness(e: Column): Column = withAggregateFunction { Skewness(e.expr) }
/**
* Aggregate function: returns the skewness of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def skewness(columnName: String): Column = skewness(Column(columnName))
/**
* Aggregate function: alias for `stddev_samp`.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev(e: Column): Column = withAggregateFunction { StddevSamp(e.expr) }
/**
* Aggregate function: alias for `stddev_samp`.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev(columnName: String): Column = stddev(Column(columnName))
/**
* Aggregate function: returns the sample standard deviation of
* the expression in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev_samp(e: Column): Column = withAggregateFunction { StddevSamp(e.expr) }
/**
* Aggregate function: returns the sample standard deviation of
* the expression in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev_samp(columnName: String): Column = stddev_samp(Column(columnName))
/**
* Aggregate function: returns the population standard deviation of
* the expression in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev_pop(e: Column): Column = withAggregateFunction { StddevPop(e.expr) }
/**
* Aggregate function: returns the population standard deviation of
* the expression in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def stddev_pop(columnName: String): Column = stddev_pop(Column(columnName))
/**
* Aggregate function: returns the sum of all values in the expression.
*
* @group agg_funcs
* @since 1.3.0
*/
def sum(e: Column): Column = withAggregateFunction { Sum(e.expr) }
/**
* Aggregate function: returns the sum of all values in the given column.
*
* @group agg_funcs
* @since 1.3.0
*/
def sum(columnName: String): Column = sum(Column(columnName))
/**
* Aggregate function: returns the sum of distinct values in the expression.
*
* @group agg_funcs
* @since 1.3.0
*/
def sumDistinct(e: Column): Column = withAggregateFunction(Sum(e.expr), isDistinct = true)
/**
* Aggregate function: returns the sum of distinct values in the expression.
*
* @group agg_funcs
* @since 1.3.0
*/
def sumDistinct(columnName: String): Column = sumDistinct(Column(columnName))
/**
* Aggregate function: alias for `var_samp`.
*
* @group agg_funcs
* @since 1.6.0
*/
def variance(e: Column): Column = withAggregateFunction { VarianceSamp(e.expr) }
/**
* Aggregate function: alias for `var_samp`.
*
* @group agg_funcs
* @since 1.6.0
*/
def variance(columnName: String): Column = variance(Column(columnName))
/**
* Aggregate function: returns the unbiased variance of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def var_samp(e: Column): Column = withAggregateFunction { VarianceSamp(e.expr) }
/**
* Aggregate function: returns the unbiased variance of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def var_samp(columnName: String): Column = var_samp(Column(columnName))
/**
* Aggregate function: returns the population variance of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def var_pop(e: Column): Column = withAggregateFunction { VariancePop(e.expr) }
/**
* Aggregate function: returns the population variance of the values in a group.
*
* @group agg_funcs
* @since 1.6.0
*/
def var_pop(columnName: String): Column = var_pop(Column(columnName))
//////////////////////////////////////////////////////////////////////////////////////////////
// Window functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* This function has been deprecated in Spark 2.4. See SPARK-25842 for more information.
*
* @group window_funcs
* @since 2.3.0
*/
@deprecated("Use Window.unboundedPreceding", "2.4.0")
def unboundedPreceding(): Column = Column(UnboundedPreceding)
/**
* This function has been deprecated in Spark 2.4. See SPARK-25842 for more information.
*
* @group window_funcs
* @since 2.3.0
*/
@deprecated("Use Window.unboundedFollowing", "2.4.0")
def unboundedFollowing(): Column = Column(UnboundedFollowing)
/**
* This function has been deprecated in Spark 2.4. See SPARK-25842 for more information.
*
* @group window_funcs
* @since 2.3.0
*/
@deprecated("Use Window.currentRow", "2.4.0")
def currentRow(): Column = Column(CurrentRow)
/**
* Window function: returns the cumulative distribution of values within a window partition,
* i.e. the fraction of rows that are below the current row.
*
* {{{
* N = total number of rows in the partition
* cumeDist(x) = number of values before (and including) x / N
* }}}
*
* @group window_funcs
* @since 1.6.0
*/
def cume_dist(): Column = withExpr { new CumeDist }
/**
* Window function: returns the rank of rows within a window partition, without any gaps.
*
* The difference between rank and dense_rank is that denseRank leaves no gaps in ranking
* sequence when there are ties. That is, if you were ranking a competition using dense_rank
* and had three people tie for second place, you would say that all three were in second
* place and that the next person came in third. Rank would give me sequential numbers, making
* the person that came in third place (after the ties) would register as coming in fifth.
*
* This is equivalent to the DENSE_RANK function in SQL.
*
* @group window_funcs
* @since 1.6.0
*/
def dense_rank(): Column = withExpr { new DenseRank }
/**
* Window function: returns the value that is `offset` rows before the current row, and
* `null` if there is less than `offset` rows before the current row. For example,
* an `offset` of one will return the previous row at any given point in the window partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lag(e: Column, offset: Int): Column = lag(e, offset, null)
/**
* Window function: returns the value that is `offset` rows before the current row, and
* `null` if there is less than `offset` rows before the current row. For example,
* an `offset` of one will return the previous row at any given point in the window partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lag(columnName: String, offset: Int): Column = lag(columnName, offset, null)
/**
* Window function: returns the value that is `offset` rows before the current row, and
* `defaultValue` if there is less than `offset` rows before the current row. For example,
* an `offset` of one will return the previous row at any given point in the window partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lag(columnName: String, offset: Int, defaultValue: Any): Column = {
lag(Column(columnName), offset, defaultValue)
}
/**
* Window function: returns the value that is `offset` rows before the current row, and
* `defaultValue` if there is less than `offset` rows before the current row. For example,
* an `offset` of one will return the previous row at any given point in the window partition.
*
* This is equivalent to the LAG function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lag(e: Column, offset: Int, defaultValue: Any): Column = withExpr {
Lag(e.expr, Literal(offset), Literal(defaultValue))
}
/**
* Window function: returns the value that is `offset` rows after the current row, and
* `null` if there is less than `offset` rows after the current row. For example,
* an `offset` of one will return the next row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lead(columnName: String, offset: Int): Column = { lead(columnName, offset, null) }
/**
* Window function: returns the value that is `offset` rows after the current row, and
* `null` if there is less than `offset` rows after the current row. For example,
* an `offset` of one will return the next row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lead(e: Column, offset: Int): Column = { lead(e, offset, null) }
/**
* Window function: returns the value that is `offset` rows after the current row, and
* `defaultValue` if there is less than `offset` rows after the current row. For example,
* an `offset` of one will return the next row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lead(columnName: String, offset: Int, defaultValue: Any): Column = {
lead(Column(columnName), offset, defaultValue)
}
/**
* Window function: returns the value that is `offset` rows after the current row, and
* `defaultValue` if there is less than `offset` rows after the current row. For example,
* an `offset` of one will return the next row at any given point in the window partition.
*
* This is equivalent to the LEAD function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def lead(e: Column, offset: Int, defaultValue: Any): Column = withExpr {
Lead(e.expr, Literal(offset), Literal(defaultValue))
}
/**
* Window function: returns the ntile group id (from 1 to `n` inclusive) in an ordered window
* partition. For example, if `n` is 4, the first quarter of the rows will get value 1, the second
* quarter will get 2, the third quarter will get 3, and the last quarter will get 4.
*
* This is equivalent to the NTILE function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def ntile(n: Int): Column = withExpr { new NTile(Literal(n)) }
/**
* Window function: returns the relative rank (i.e. percentile) of rows within a window partition.
*
* This is computed by:
* {{{
* (rank of row in its partition - 1) / (number of rows in the partition - 1)
* }}}
*
* This is equivalent to the PERCENT_RANK function in SQL.
*
* @group window_funcs
* @since 1.6.0
*/
def percent_rank(): Column = withExpr { new PercentRank }
/**
* Window function: returns the rank of rows within a window partition.
*
* The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking
* sequence when there are ties. That is, if you were ranking a competition using dense_rank
* and had three people tie for second place, you would say that all three were in second
* place and that the next person came in third. Rank would give me sequential numbers, making
* the person that came in third place (after the ties) would register as coming in fifth.
*
* This is equivalent to the RANK function in SQL.
*
* @group window_funcs
* @since 1.4.0
*/
def rank(): Column = withExpr { new Rank }
/**
* Window function: returns a sequential number starting at 1 within a window partition.
*
* @group window_funcs
* @since 1.6.0
*/
def row_number(): Column = withExpr { RowNumber() }
//////////////////////////////////////////////////////////////////////////////////////////////
// Non-aggregate functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Creates a new array column. The input columns must all have the same data type.
*
* @group normal_funcs
* @since 1.4.0
*/
@scala.annotation.varargs
def array(cols: Column*): Column = withExpr { CreateArray(cols.map(_.expr)) }
/**
* Creates a new array column. The input columns must all have the same data type.
*
* @group normal_funcs
* @since 1.4.0
*/
@scala.annotation.varargs
def array(colName: String, colNames: String*): Column = {
array((colName +: colNames).map(col) : _*)
}
/**
* Creates a new map column. The input columns must be grouped as key-value pairs, e.g.
* (key1, value1, key2, value2, ...). The key columns must all have the same data type, and can't
* be null. The value columns must all have the same data type.
*
* @group normal_funcs
* @since 2.0
*/
@scala.annotation.varargs
def map(cols: Column*): Column = withExpr { CreateMap(cols.map(_.expr)) }
/**
* Creates a new map column. The array in the first column is used for keys. The array in the
* second column is used for values. All elements in the array for key should not be null.
*
* @group normal_funcs
* @since 2.4
*/
def map_from_arrays(keys: Column, values: Column): Column = withExpr {
MapFromArrays(keys.expr, values.expr)
}
/**
* Marks a DataFrame as small enough for use in broadcast joins.
*
* The following example marks the right DataFrame for broadcast hash join using `joinKey`.
* {{{
* // left and right are DataFrames
* left.join(broadcast(right), "joinKey")
* }}}
*
* @group normal_funcs
* @since 1.5.0
*/
def broadcast[T](df: Dataset[T]): Dataset[T] = {
Dataset[T](df.sparkSession,
ResolvedHint(df.logicalPlan, HintInfo(broadcast = true)))(df.exprEnc)
}
/**
* Returns the first column that is not null, or null if all inputs are null.
*
* For example, `coalesce(a, b, c)` will return a if a is not null,
* or b if a is null and b is not null, or c if both a and b are null but c is not null.
*
* @group normal_funcs
* @since 1.3.0
*/
@scala.annotation.varargs
def coalesce(e: Column*): Column = withExpr { Coalesce(e.map(_.expr)) }
/**
* Creates a string column for the file name of the current Spark task.
*
* @group normal_funcs
* @since 1.6.0
*/
def input_file_name(): Column = withExpr { InputFileName() }
/**
* Return true iff the column is NaN.
*
* @group normal_funcs
* @since 1.6.0
*/
def isnan(e: Column): Column = withExpr { IsNaN(e.expr) }
/**
* Return true iff the column is null.
*
* @group normal_funcs
* @since 1.6.0
*/
def isnull(e: Column): Column = withExpr { IsNull(e.expr) }
/**
* A column expression that generates monotonically increasing 64-bit integers.
*
* The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive.
* The current implementation puts the partition ID in the upper 31 bits, and the record number
* within each partition in the lower 33 bits. The assumption is that the data frame has
* less than 1 billion partitions, and each partition has less than 8 billion records.
*
* As an example, consider a `DataFrame` with two partitions, each with 3 records.
* This expression would return the following IDs:
*
* {{{
* 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.
* }}}
*
* @group normal_funcs
* @since 1.4.0
*/
@deprecated("Use monotonically_increasing_id()", "2.0.0")
def monotonicallyIncreasingId(): Column = monotonically_increasing_id()
/**
* A column expression that generates monotonically increasing 64-bit integers.
*
* The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive.
* The current implementation puts the partition ID in the upper 31 bits, and the record number
* within each partition in the lower 33 bits. The assumption is that the data frame has
* less than 1 billion partitions, and each partition has less than 8 billion records.
*
* As an example, consider a `DataFrame` with two partitions, each with 3 records.
* This expression would return the following IDs:
*
* {{{
* 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.
* }}}
*
* @group normal_funcs
* @since 1.6.0
*/
def monotonically_increasing_id(): Column = withExpr { MonotonicallyIncreasingID() }
/**
* Returns col1 if it is not NaN, or col2 if col1 is NaN.
*
* Both inputs should be floating point columns (DoubleType or FloatType).
*
* @group normal_funcs
* @since 1.5.0
*/
def nanvl(col1: Column, col2: Column): Column = withExpr { NaNvl(col1.expr, col2.expr) }
/**
* Unary minus, i.e. negate the expression.
* {{{
* // Select the amount column and negates all values.
* // Scala:
* df.select( -df("amount") )
*
* // Java:
* df.select( negate(df.col("amount")) );
* }}}
*
* @group normal_funcs
* @since 1.3.0
*/
def negate(e: Column): Column = -e
/**
* Inversion of boolean expression, i.e. NOT.
* {{{
* // Scala: select rows that are not active (isActive === false)
* df.filter( !df("isActive") )
*
* // Java:
* df.filter( not(df.col("isActive")) );
* }}}
*
* @group normal_funcs
* @since 1.3.0
*/
def not(e: Column): Column = !e
/**
* Generate a random column with independent and identically distributed (i.i.d.) samples
* uniformly distributed in [0.0, 1.0).
*
* @note The function is non-deterministic in general case.
*
* @group normal_funcs
* @since 1.4.0
*/
def rand(seed: Long): Column = withExpr { Rand(seed) }
/**
* Generate a random column with independent and identically distributed (i.i.d.) samples
* uniformly distributed in [0.0, 1.0).
*
* @note The function is non-deterministic in general case.
*
* @group normal_funcs
* @since 1.4.0
*/
def rand(): Column = rand(Utils.random.nextLong)
/**
* Generate a column with independent and identically distributed (i.i.d.) samples from
* the standard normal distribution.
*
* @note The function is non-deterministic in general case.
*
* @group normal_funcs
* @since 1.4.0
*/
def randn(seed: Long): Column = withExpr { Randn(seed) }
/**
* Generate a column with independent and identically distributed (i.i.d.) samples from
* the standard normal distribution.
*
* @note The function is non-deterministic in general case.
*
* @group normal_funcs
* @since 1.4.0
*/
def randn(): Column = randn(Utils.random.nextLong)
/**
* Partition ID.
*
* @note This is non-deterministic because it depends on data partitioning and task scheduling.
*
* @group normal_funcs
* @since 1.6.0
*/
def spark_partition_id(): Column = withExpr { SparkPartitionID() }
/**
* Computes the square root of the specified float value.
*
* @group math_funcs
* @since 1.3.0
*/
def sqrt(e: Column): Column = withExpr { Sqrt(e.expr) }
/**
* Computes the square root of the specified float value.
*
* @group math_funcs
* @since 1.5.0
*/
def sqrt(colName: String): Column = sqrt(Column(colName))
/**
* Creates a new struct column.
* If the input column is a column in a `DataFrame`, or a derived column expression
* that is named (i.e. aliased), its name would be retained as the StructField's name,
* otherwise, the newly generated StructField's name would be auto generated as
* `col` with a suffix `index + 1`, i.e. col1, col2, col3, ...
*
* @group normal_funcs
* @since 1.4.0
*/
@scala.annotation.varargs
def struct(cols: Column*): Column = withExpr { CreateStruct(cols.map(_.expr)) }
/**
* Creates a new struct column that composes multiple input columns.
*
* @group normal_funcs
* @since 1.4.0
*/
@scala.annotation.varargs
def struct(colName: String, colNames: String*): Column = {
struct((colName +: colNames).map(col) : _*)
}
/**
* Evaluates a list of conditions and returns one of multiple possible result expressions.
* If otherwise is not defined at the end, null is returned for unmatched conditions.
*
* {{{
* // Example: encoding gender string column into integer.
*
* // Scala:
* people.select(when(people("gender") === "male", 0)
* .when(people("gender") === "female", 1)
* .otherwise(2))
*
* // Java:
* people.select(when(col("gender").equalTo("male"), 0)
* .when(col("gender").equalTo("female"), 1)
* .otherwise(2))
* }}}
*
* @group normal_funcs
* @since 1.4.0
*/
def when(condition: Column, value: Any): Column = withExpr {
CaseWhen(Seq((condition.expr, lit(value).expr)))
}
/**
* Computes bitwise NOT (~) of a number.
*
* @group normal_funcs
* @since 1.4.0
*/
def bitwiseNOT(e: Column): Column = withExpr { BitwiseNot(e.expr) }
/**
* Parses the expression string into the column that it represents, similar to
* [[Dataset#selectExpr]].
* {{{
* // get the number of words of each length
* df.groupBy(expr("length(word)")).count()
* }}}
*
* @group normal_funcs
*/
def expr(expr: String): Column = {
val parser = SparkSession.getActiveSession.map(_.sessionState.sqlParser).getOrElse {
new SparkSqlParser(new SQLConf)
}
Column(parser.parseExpression(expr))
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Math Functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the absolute value of a numeric value.
*
* @group math_funcs
* @since 1.3.0
*/
def abs(e: Column): Column = withExpr { Abs(e.expr) }
/**
* @return inverse cosine of `e` in radians, as if computed by `java.lang.Math.acos`
*
* @group math_funcs
* @since 1.4.0
*/
def acos(e: Column): Column = withExpr { Acos(e.expr) }
/**
* @return inverse cosine of `columnName`, as if computed by `java.lang.Math.acos`
*
* @group math_funcs
* @since 1.4.0
*/
def acos(columnName: String): Column = acos(Column(columnName))
/**
* @return inverse sine of `e` in radians, as if computed by `java.lang.Math.asin`
*
* @group math_funcs
* @since 1.4.0
*/
def asin(e: Column): Column = withExpr { Asin(e.expr) }
/**
* @return inverse sine of `columnName`, as if computed by `java.lang.Math.asin`
*
* @group math_funcs
* @since 1.4.0
*/
def asin(columnName: String): Column = asin(Column(columnName))
/**
* @return inverse tangent of `e`, as if computed by `java.lang.Math.atan`
*
* @group math_funcs
* @since 1.4.0
*/
def atan(e: Column): Column = withExpr { Atan(e.expr) }
/**
* @return inverse tangent of `columnName`, as if computed by `java.lang.Math.atan`
*
* @group math_funcs
* @since 1.4.0
*/
def atan(columnName: String): Column = atan(Column(columnName))
/**
* @param y coordinate on y-axis
* @param x coordinate on x-axis
* @return the theta component of the point
* (r, theta)
* in polar coordinates that corresponds to the point
* (x, y) in Cartesian coordinates,
* as if computed by `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(y: Column, x: Column): Column = withExpr { Atan2(y.expr, x.expr) }
/**
* @param y coordinate on y-axis
* @param xName coordinate on x-axis
* @return the theta component of the point
* (r, theta)
* in polar coordinates that corresponds to the point
* (x, y) in Cartesian coordinates,
* as if computed by `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(y: Column, xName: String): Column = atan2(y, Column(xName))
/**
* @param yName coordinate on y-axis
* @param x coordinate on x-axis
* @return the theta component of the point
* (r, theta)
* in polar coordinates that corresponds to the point
* (x, y) in Cartesian coordinates,
* as if computed by `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yName: String, x: Column): Column = atan2(Column(yName), x)
/**
* @param yName coordinate on y-axis
* @param xName coordinate on x-axis
* @return the theta component of the point
* (r, theta)
* in polar coordinates that corresponds to the point
* (x, y) in Cartesian coordinates,
* as if computed by `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yName: String, xName: String): Column =
atan2(Column(yName), Column(xName))
/**
* @param y coordinate on y-axis
* @param xValue coordinate on x-axis
* @return the theta component of the point
* (r, theta)
* in polar coordinates that corresponds to the point
* (x, y) in Cartesian coordinates,
* as if computed by `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(y: Column, xValue: Double): Column = atan2(y, lit(xValue))
/**
* @param yName coordinate on y-axis
* @param xValue coordinate on x-axis
* @return the theta component of the point
* (r, theta)
* in polar coordinates that corresponds to the point
* (x, y) in Cartesian coordinates,
* as if computed by `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yName: String, xValue: Double): Column = atan2(Column(yName), xValue)
/**
* @param yValue coordinate on y-axis
* @param x coordinate on x-axis
* @return the theta component of the point
* (r, theta)
* in polar coordinates that corresponds to the point
* (x, y) in Cartesian coordinates,
* as if computed by `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yValue: Double, x: Column): Column = atan2(lit(yValue), x)
/**
* @param yValue coordinate on y-axis
* @param xName coordinate on x-axis
* @return the theta component of the point
* (r, theta)
* in polar coordinates that corresponds to the point
* (x, y) in Cartesian coordinates,
* as if computed by `java.lang.Math.atan2`
*
* @group math_funcs
* @since 1.4.0
*/
def atan2(yValue: Double, xName: String): Column = atan2(yValue, Column(xName))
/**
* An expression that returns the string representation of the binary value of the given long
* column. For example, bin("12") returns "1100".
*
* @group math_funcs
* @since 1.5.0
*/
def bin(e: Column): Column = withExpr { Bin(e.expr) }
/**
* An expression that returns the string representation of the binary value of the given long
* column. For example, bin("12") returns "1100".
*
* @group math_funcs
* @since 1.5.0
*/
def bin(columnName: String): Column = bin(Column(columnName))
/**
* Computes the cube-root of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def cbrt(e: Column): Column = withExpr { Cbrt(e.expr) }
/**
* Computes the cube-root of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def cbrt(columnName: String): Column = cbrt(Column(columnName))
/**
* Computes the ceiling of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def ceil(e: Column): Column = withExpr { Ceil(e.expr) }
/**
* Computes the ceiling of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def ceil(columnName: String): Column = ceil(Column(columnName))
/**
* Convert a number in a string column from one base to another.
*
* @group math_funcs
* @since 1.5.0
*/
def conv(num: Column, fromBase: Int, toBase: Int): Column = withExpr {
Conv(num.expr, lit(fromBase).expr, lit(toBase).expr)
}
/**
* @param e angle in radians
* @return cosine of the angle, as if computed by `java.lang.Math.cos`
*
* @group math_funcs
* @since 1.4.0
*/
def cos(e: Column): Column = withExpr { Cos(e.expr) }
/**
* @param columnName angle in radians
* @return cosine of the angle, as if computed by `java.lang.Math.cos`
*
* @group math_funcs
* @since 1.4.0
*/
def cos(columnName: String): Column = cos(Column(columnName))
/**
* @param e hyperbolic angle
* @return hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh`
*
* @group math_funcs
* @since 1.4.0
*/
def cosh(e: Column): Column = withExpr { Cosh(e.expr) }
/**
* @param columnName hyperbolic angle
* @return hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh`
*
* @group math_funcs
* @since 1.4.0
*/
def cosh(columnName: String): Column = cosh(Column(columnName))
/**
* Computes the exponential of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def exp(e: Column): Column = withExpr { Exp(e.expr) }
/**
* Computes the exponential of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def exp(columnName: String): Column = exp(Column(columnName))
/**
* Computes the exponential of the given value minus one.
*
* @group math_funcs
* @since 1.4.0
*/
def expm1(e: Column): Column = withExpr { Expm1(e.expr) }
/**
* Computes the exponential of the given column minus one.
*
* @group math_funcs
* @since 1.4.0
*/
def expm1(columnName: String): Column = expm1(Column(columnName))
/**
* Computes the factorial of the given value.
*
* @group math_funcs
* @since 1.5.0
*/
def factorial(e: Column): Column = withExpr { Factorial(e.expr) }
/**
* Computes the floor of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def floor(e: Column): Column = withExpr { Floor(e.expr) }
/**
* Computes the floor of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def floor(columnName: String): Column = floor(Column(columnName))
/**
* Returns the greatest value of the list of values, skipping null values.
* This function takes at least 2 parameters. It will return null iff all parameters are null.
*
* @group normal_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def greatest(exprs: Column*): Column = withExpr { Greatest(exprs.map(_.expr)) }
/**
* Returns the greatest value of the list of column names, skipping null values.
* This function takes at least 2 parameters. It will return null iff all parameters are null.
*
* @group normal_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def greatest(columnName: String, columnNames: String*): Column = {
greatest((columnName +: columnNames).map(Column.apply): _*)
}
/**
* Computes hex value of the given column.
*
* @group math_funcs
* @since 1.5.0
*/
def hex(column: Column): Column = withExpr { Hex(column.expr) }
/**
* Inverse of hex. Interprets each pair of characters as a hexadecimal number
* and converts to the byte representation of number.
*
* @group math_funcs
* @since 1.5.0
*/
def unhex(column: Column): Column = withExpr { Unhex(column.expr) }
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Column, r: Column): Column = withExpr { Hypot(l.expr, r.expr) }
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Column, rightName: String): Column = hypot(l, Column(rightName))
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(leftName: String, r: Column): Column = hypot(Column(leftName), r)
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(leftName: String, rightName: String): Column =
hypot(Column(leftName), Column(rightName))
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Column, r: Double): Column = hypot(l, lit(r))
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(leftName: String, r: Double): Column = hypot(Column(leftName), r)
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Double, r: Column): Column = hypot(lit(l), r)
/**
* Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.
*
* @group math_funcs
* @since 1.4.0
*/
def hypot(l: Double, rightName: String): Column = hypot(l, Column(rightName))
/**
* Returns the least value of the list of values, skipping null values.
* This function takes at least 2 parameters. It will return null iff all parameters are null.
*
* @group normal_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def least(exprs: Column*): Column = withExpr { Least(exprs.map(_.expr)) }
/**
* Returns the least value of the list of column names, skipping null values.
* This function takes at least 2 parameters. It will return null iff all parameters are null.
*
* @group normal_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def least(columnName: String, columnNames: String*): Column = {
least((columnName +: columnNames).map(Column.apply): _*)
}
/**
* Computes the natural logarithm of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def log(e: Column): Column = withExpr { Log(e.expr) }
/**
* Computes the natural logarithm of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def log(columnName: String): Column = log(Column(columnName))
/**
* Returns the first argument-base logarithm of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def log(base: Double, a: Column): Column = withExpr { Logarithm(lit(base).expr, a.expr) }
/**
* Returns the first argument-base logarithm of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def log(base: Double, columnName: String): Column = log(base, Column(columnName))
/**
* Computes the logarithm of the given value in base 10.
*
* @group math_funcs
* @since 1.4.0
*/
def log10(e: Column): Column = withExpr { Log10(e.expr) }
/**
* Computes the logarithm of the given value in base 10.
*
* @group math_funcs
* @since 1.4.0
*/
def log10(columnName: String): Column = log10(Column(columnName))
/**
* Computes the natural logarithm of the given value plus one.
*
* @group math_funcs
* @since 1.4.0
*/
def log1p(e: Column): Column = withExpr { Log1p(e.expr) }
/**
* Computes the natural logarithm of the given column plus one.
*
* @group math_funcs
* @since 1.4.0
*/
def log1p(columnName: String): Column = log1p(Column(columnName))
/**
* Computes the logarithm of the given column in base 2.
*
* @group math_funcs
* @since 1.5.0
*/
def log2(expr: Column): Column = withExpr { Log2(expr.expr) }
/**
* Computes the logarithm of the given value in base 2.
*
* @group math_funcs
* @since 1.5.0
*/
def log2(columnName: String): Column = log2(Column(columnName))
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Column, r: Column): Column = withExpr { Pow(l.expr, r.expr) }
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Column, rightName: String): Column = pow(l, Column(rightName))
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(leftName: String, r: Column): Column = pow(Column(leftName), r)
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(leftName: String, rightName: String): Column = pow(Column(leftName), Column(rightName))
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Column, r: Double): Column = pow(l, lit(r))
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(leftName: String, r: Double): Column = pow(Column(leftName), r)
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Double, r: Column): Column = pow(lit(l), r)
/**
* Returns the value of the first argument raised to the power of the second argument.
*
* @group math_funcs
* @since 1.4.0
*/
def pow(l: Double, rightName: String): Column = pow(l, Column(rightName))
/**
* Returns the positive value of dividend mod divisor.
*
* @group math_funcs
* @since 1.5.0
*/
def pmod(dividend: Column, divisor: Column): Column = withExpr {
Pmod(dividend.expr, divisor.expr)
}
/**
* Returns the double value that is closest in value to the argument and
* is equal to a mathematical integer.
*
* @group math_funcs
* @since 1.4.0
*/
def rint(e: Column): Column = withExpr { Rint(e.expr) }
/**
* Returns the double value that is closest in value to the argument and
* is equal to a mathematical integer.
*
* @group math_funcs
* @since 1.4.0
*/
def rint(columnName: String): Column = rint(Column(columnName))
/**
* Returns the value of the column `e` rounded to 0 decimal places with HALF_UP round mode.
*
* @group math_funcs
* @since 1.5.0
*/
def round(e: Column): Column = round(e, 0)
/**
* Round the value of `e` to `scale` decimal places with HALF_UP round mode
* if `scale` is greater than or equal to 0 or at integral part when `scale` is less than 0.
*
* @group math_funcs
* @since 1.5.0
*/
def round(e: Column, scale: Int): Column = withExpr { Round(e.expr, Literal(scale)) }
/**
* Returns the value of the column `e` rounded to 0 decimal places with HALF_EVEN round mode.
*
* @group math_funcs
* @since 2.0.0
*/
def bround(e: Column): Column = bround(e, 0)
/**
* Round the value of `e` to `scale` decimal places with HALF_EVEN round mode
* if `scale` is greater than or equal to 0 or at integral part when `scale` is less than 0.
*
* @group math_funcs
* @since 2.0.0
*/
def bround(e: Column, scale: Int): Column = withExpr { BRound(e.expr, Literal(scale)) }
/**
* Shift the given value numBits left. If the given value is a long value, this function
* will return a long value else it will return an integer value.
*
* @group math_funcs
* @since 1.5.0
*/
def shiftLeft(e: Column, numBits: Int): Column = withExpr { ShiftLeft(e.expr, lit(numBits).expr) }
/**
* (Signed) shift the given value numBits right. If the given value is a long value, it will
* return a long value else it will return an integer value.
*
* @group math_funcs
* @since 1.5.0
*/
def shiftRight(e: Column, numBits: Int): Column = withExpr {
ShiftRight(e.expr, lit(numBits).expr)
}
/**
* Unsigned shift the given value numBits right. If the given value is a long value,
* it will return a long value else it will return an integer value.
*
* @group math_funcs
* @since 1.5.0
*/
def shiftRightUnsigned(e: Column, numBits: Int): Column = withExpr {
ShiftRightUnsigned(e.expr, lit(numBits).expr)
}
/**
* Computes the signum of the given value.
*
* @group math_funcs
* @since 1.4.0
*/
def signum(e: Column): Column = withExpr { Signum(e.expr) }
/**
* Computes the signum of the given column.
*
* @group math_funcs
* @since 1.4.0
*/
def signum(columnName: String): Column = signum(Column(columnName))
/**
* @param e angle in radians
* @return sine of the angle, as if computed by `java.lang.Math.sin`
*
* @group math_funcs
* @since 1.4.0
*/
def sin(e: Column): Column = withExpr { Sin(e.expr) }
/**
* @param columnName angle in radians
* @return sine of the angle, as if computed by `java.lang.Math.sin`
*
* @group math_funcs
* @since 1.4.0
*/
def sin(columnName: String): Column = sin(Column(columnName))
/**
* @param e hyperbolic angle
* @return hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh`
*
* @group math_funcs
* @since 1.4.0
*/
def sinh(e: Column): Column = withExpr { Sinh(e.expr) }
/**
* @param columnName hyperbolic angle
* @return hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh`
*
* @group math_funcs
* @since 1.4.0
*/
def sinh(columnName: String): Column = sinh(Column(columnName))
/**
* @param e angle in radians
* @return tangent of the given value, as if computed by `java.lang.Math.tan`
*
* @group math_funcs
* @since 1.4.0
*/
def tan(e: Column): Column = withExpr { Tan(e.expr) }
/**
* @param columnName angle in radians
* @return tangent of the given value, as if computed by `java.lang.Math.tan`
*
* @group math_funcs
* @since 1.4.0
*/
def tan(columnName: String): Column = tan(Column(columnName))
/**
* @param e hyperbolic angle
* @return hyperbolic tangent of the given value, as if computed by `java.lang.Math.tanh`
*
* @group math_funcs
* @since 1.4.0
*/
def tanh(e: Column): Column = withExpr { Tanh(e.expr) }
/**
* @param columnName hyperbolic angle
* @return hyperbolic tangent of the given value, as if computed by `java.lang.Math.tanh`
*
* @group math_funcs
* @since 1.4.0
*/
def tanh(columnName: String): Column = tanh(Column(columnName))
/**
* @group math_funcs
* @since 1.4.0
*/
@deprecated("Use degrees", "2.1.0")
def toDegrees(e: Column): Column = degrees(e)
/**
* @group math_funcs
* @since 1.4.0
*/
@deprecated("Use degrees", "2.1.0")
def toDegrees(columnName: String): Column = degrees(Column(columnName))
/**
* Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
*
* @param e angle in radians
* @return angle in degrees, as if computed by `java.lang.Math.toDegrees`
*
* @group math_funcs
* @since 2.1.0
*/
def degrees(e: Column): Column = withExpr { ToDegrees(e.expr) }
/**
* Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
*
* @param columnName angle in radians
* @return angle in degrees, as if computed by `java.lang.Math.toDegrees`
*
* @group math_funcs
* @since 2.1.0
*/
def degrees(columnName: String): Column = degrees(Column(columnName))
/**
* @group math_funcs
* @since 1.4.0
*/
@deprecated("Use radians", "2.1.0")
def toRadians(e: Column): Column = radians(e)
/**
* @group math_funcs
* @since 1.4.0
*/
@deprecated("Use radians", "2.1.0")
def toRadians(columnName: String): Column = radians(Column(columnName))
/**
* Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
*
* @param e angle in degrees
* @return angle in radians, as if computed by `java.lang.Math.toRadians`
*
* @group math_funcs
* @since 2.1.0
*/
def radians(e: Column): Column = withExpr { ToRadians(e.expr) }
/**
* Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
*
* @param columnName angle in degrees
* @return angle in radians, as if computed by `java.lang.Math.toRadians`
*
* @group math_funcs
* @since 2.1.0
*/
def radians(columnName: String): Column = radians(Column(columnName))
//////////////////////////////////////////////////////////////////////////////////////////////
// Misc functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Calculates the MD5 digest of a binary column and returns the value
* as a 32 character hex string.
*
* @group misc_funcs
* @since 1.5.0
*/
def md5(e: Column): Column = withExpr { Md5(e.expr) }
/**
* Calculates the SHA-1 digest of a binary column and returns the value
* as a 40 character hex string.
*
* @group misc_funcs
* @since 1.5.0
*/
def sha1(e: Column): Column = withExpr { Sha1(e.expr) }
/**
* Calculates the SHA-2 family of hash functions of a binary column and
* returns the value as a hex string.
*
* @param e column to compute SHA-2 on.
* @param numBits one of 224, 256, 384, or 512.
*
* @group misc_funcs
* @since 1.5.0
*/
def sha2(e: Column, numBits: Int): Column = {
require(Seq(0, 224, 256, 384, 512).contains(numBits),
s"numBits $numBits is not in the permitted values (0, 224, 256, 384, 512)")
withExpr { Sha2(e.expr, lit(numBits).expr) }
}
/**
* Calculates the cyclic redundancy check value (CRC32) of a binary column and
* returns the value as a bigint.
*
* @group misc_funcs
* @since 1.5.0
*/
def crc32(e: Column): Column = withExpr { Crc32(e.expr) }
/**
* Calculates the hash code of given columns, and returns the result as an int column.
*
* @group misc_funcs
* @since 2.0.0
*/
@scala.annotation.varargs
def hash(cols: Column*): Column = withExpr {
new Murmur3Hash(cols.map(_.expr))
}
//////////////////////////////////////////////////////////////////////////////////////////////
// String functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the numeric value of the first character of the string column, and returns the
* result as an int column.
*
* @group string_funcs
* @since 1.5.0
*/
def ascii(e: Column): Column = withExpr { Ascii(e.expr) }
/**
* Computes the BASE64 encoding of a binary column and returns it as a string column.
* This is the reverse of unbase64.
*
* @group string_funcs
* @since 1.5.0
*/
def base64(e: Column): Column = withExpr { Base64(e.expr) }
/**
* Concatenates multiple input string columns together into a single string column,
* using the given separator.
*
* @group string_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def concat_ws(sep: String, exprs: Column*): Column = withExpr {
ConcatWs(Literal.create(sep, StringType) +: exprs.map(_.expr))
}
/**
* Computes the first argument into a string from a binary using the provided character set
* (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16').
* If either argument is null, the result will also be null.
*
* @group string_funcs
* @since 1.5.0
*/
def decode(value: Column, charset: String): Column = withExpr {
Decode(value.expr, lit(charset).expr)
}
/**
* Computes the first argument into a binary from a string using the provided character set
* (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16').
* If either argument is null, the result will also be null.
*
* @group string_funcs
* @since 1.5.0
*/
def encode(value: Column, charset: String): Column = withExpr {
Encode(value.expr, lit(charset).expr)
}
/**
* Formats numeric column x to a format like '#,###,###.##', rounded to d decimal places
* with HALF_EVEN round mode, and returns the result as a string column.
*
* If d is 0, the result has no decimal point or fractional part.
* If d is less than 0, the result will be null.
*
* @group string_funcs
* @since 1.5.0
*/
def format_number(x: Column, d: Int): Column = withExpr {
FormatNumber(x.expr, lit(d).expr)
}
/**
* Formats the arguments in printf-style and returns the result as a string column.
*
* @group string_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def format_string(format: String, arguments: Column*): Column = withExpr {
FormatString((lit(format) +: arguments).map(_.expr): _*)
}
/**
* Returns a new string column by converting the first letter of each word to uppercase.
* Words are delimited by whitespace.
*
* For example, "hello world" will become "Hello World".
*
* @group string_funcs
* @since 1.5.0
*/
def initcap(e: Column): Column = withExpr { InitCap(e.expr) }
/**
* Locate the position of the first occurrence of substr column in the given string.
* Returns null if either of the arguments are null.
*
* @note The position is not zero based, but 1 based index. Returns 0 if substr
* could not be found in str.
*
* @group string_funcs
* @since 1.5.0
*/
def instr(str: Column, substring: String): Column = withExpr {
StringInstr(str.expr, lit(substring).expr)
}
/**
* Computes the character length of a given string or number of bytes of a binary string.
* The length of character strings include the trailing spaces. The length of binary strings
* includes binary zeros.
*
* @group string_funcs
* @since 1.5.0
*/
def length(e: Column): Column = withExpr { Length(e.expr) }
/**
* Converts a string column to lower case.
*
* @group string_funcs
* @since 1.3.0
*/
def lower(e: Column): Column = withExpr { Lower(e.expr) }
/**
* Computes the Levenshtein distance of the two given string columns.
* @group string_funcs
* @since 1.5.0
*/
def levenshtein(l: Column, r: Column): Column = withExpr { Levenshtein(l.expr, r.expr) }
/**
* Locate the position of the first occurrence of substr.
*
* @note The position is not zero based, but 1 based index. Returns 0 if substr
* could not be found in str.
*
* @group string_funcs
* @since 1.5.0
*/
def locate(substr: String, str: Column): Column = withExpr {
new StringLocate(lit(substr).expr, str.expr)
}
/**
* Locate the position of the first occurrence of substr in a string column, after position pos.
*
* @note The position is not zero based, but 1 based index. returns 0 if substr
* could not be found in str.
*
* @group string_funcs
* @since 1.5.0
*/
def locate(substr: String, str: Column, pos: Int): Column = withExpr {
StringLocate(lit(substr).expr, str.expr, lit(pos).expr)
}
/**
* Left-pad the string column with pad to a length of len. If the string column is longer
* than len, the return value is shortened to len characters.
*
* @group string_funcs
* @since 1.5.0
*/
def lpad(str: Column, len: Int, pad: String): Column = withExpr {
StringLPad(str.expr, lit(len).expr, lit(pad).expr)
}
/**
* Trim the spaces from left end for the specified string value.
*
* @group string_funcs
* @since 1.5.0
*/
def ltrim(e: Column): Column = withExpr {StringTrimLeft(e.expr) }
/**
* Trim the specified character string from left end for the specified string column.
* @group string_funcs
* @since 2.3.0
*/
def ltrim(e: Column, trimString: String): Column = withExpr {
StringTrimLeft(e.expr, Literal(trimString))
}
/**
* Extract a specific group matched by a Java regex, from the specified string column.
* If the regex did not match, or the specified group did not match, an empty string is returned.
*
* @group string_funcs
* @since 1.5.0
*/
def regexp_extract(e: Column, exp: String, groupIdx: Int): Column = withExpr {
RegExpExtract(e.expr, lit(exp).expr, lit(groupIdx).expr)
}
/**
* Replace all substrings of the specified string value that match regexp with rep.
*
* @group string_funcs
* @since 1.5.0
*/
def regexp_replace(e: Column, pattern: String, replacement: String): Column = withExpr {
RegExpReplace(e.expr, lit(pattern).expr, lit(replacement).expr)
}
/**
* Replace all substrings of the specified string value that match regexp with rep.
*
* @group string_funcs
* @since 2.1.0
*/
def regexp_replace(e: Column, pattern: Column, replacement: Column): Column = withExpr {
RegExpReplace(e.expr, pattern.expr, replacement.expr)
}
/**
* Decodes a BASE64 encoded string column and returns it as a binary column.
* This is the reverse of base64.
*
* @group string_funcs
* @since 1.5.0
*/
def unbase64(e: Column): Column = withExpr { UnBase64(e.expr) }
/**
* Right-pad the string column with pad to a length of len. If the string column is longer
* than len, the return value is shortened to len characters.
*
* @group string_funcs
* @since 1.5.0
*/
def rpad(str: Column, len: Int, pad: String): Column = withExpr {
StringRPad(str.expr, lit(len).expr, lit(pad).expr)
}
/**
* Repeats a string column n times, and returns it as a new string column.
*
* @group string_funcs
* @since 1.5.0
*/
def repeat(str: Column, n: Int): Column = withExpr {
StringRepeat(str.expr, lit(n).expr)
}
/**
* Trim the spaces from right end for the specified string value.
*
* @group string_funcs
* @since 1.5.0
*/
def rtrim(e: Column): Column = withExpr { StringTrimRight(e.expr) }
/**
* Trim the specified character string from right end for the specified string column.
* @group string_funcs
* @since 2.3.0
*/
def rtrim(e: Column, trimString: String): Column = withExpr {
StringTrimRight(e.expr, Literal(trimString))
}
/**
* Returns the soundex code for the specified expression.
*
* @group string_funcs
* @since 1.5.0
*/
def soundex(e: Column): Column = withExpr { SoundEx(e.expr) }
/**
* Splits str around pattern (pattern is a regular expression).
*
* @note Pattern is a string representation of the regular expression.
*
* @group string_funcs
* @since 1.5.0
*/
def split(str: Column, pattern: String): Column = withExpr {
StringSplit(str.expr, lit(pattern).expr)
}
/**
* Substring starts at `pos` and is of length `len` when str is String type or
* returns the slice of byte array that starts at `pos` in byte and is of length `len`
* when str is Binary type
*
* @note The position is not zero based, but 1 based index.
*
* @group string_funcs
* @since 1.5.0
*/
def substring(str: Column, pos: Int, len: Int): Column = withExpr {
Substring(str.expr, lit(pos).expr, lit(len).expr)
}
/**
* Returns the substring from string str before count occurrences of the delimiter delim.
* If count is positive, everything the left of the final delimiter (counting from left) is
* returned. If count is negative, every to the right of the final delimiter (counting from the
* right) is returned. substring_index performs a case-sensitive match when searching for delim.
*
* @group string_funcs
*/
def substring_index(str: Column, delim: String, count: Int): Column = withExpr {
SubstringIndex(str.expr, lit(delim).expr, lit(count).expr)
}
/**
* Translate any character in the src by a character in replaceString.
* The characters in replaceString correspond to the characters in matchingString.
* The translate will happen when any character in the string matches the character
* in the `matchingString`.
*
* @group string_funcs
* @since 1.5.0
*/
def translate(src: Column, matchingString: String, replaceString: String): Column = withExpr {
StringTranslate(src.expr, lit(matchingString).expr, lit(replaceString).expr)
}
/**
* Trim the spaces from both ends for the specified string column.
*
* @group string_funcs
* @since 1.5.0
*/
def trim(e: Column): Column = withExpr { StringTrim(e.expr) }
/**
* Trim the specified character from both ends for the specified string column.
* @group string_funcs
* @since 2.3.0
*/
def trim(e: Column, trimString: String): Column = withExpr {
StringTrim(e.expr, Literal(trimString))
}
/**
* Converts a string column to upper case.
*
* @group string_funcs
* @since 1.3.0
*/
def upper(e: Column): Column = withExpr { Upper(e.expr) }
//////////////////////////////////////////////////////////////////////////////////////////////
// DateTime functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns the date that is `numMonths` after `startDate`.
*
* @param startDate A date, timestamp or string. If a string, the data must be in a format that
* can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param numMonths The number of months to add to `startDate`, can be negative to subtract months
* @return A date, or null if `startDate` was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def add_months(startDate: Column, numMonths: Int): Column = withExpr {
AddMonths(startDate.expr, Literal(numMonths))
}
/**
* Returns the current date as a date column.
*
* @group datetime_funcs
* @since 1.5.0
*/
def current_date(): Column = withExpr { CurrentDate() }
/**
* Returns the current timestamp as a timestamp column.
*
* @group datetime_funcs
* @since 1.5.0
*/
def current_timestamp(): Column = withExpr { CurrentTimestamp() }
/**
* Converts a date/timestamp/string to a value of string in the format specified by the date
* format given by the second argument.
*
* See [[java.text.SimpleDateFormat]] for valid date and time format patterns
*
* @param dateExpr A date, timestamp or string. If a string, the data must be in a format that
* can be cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param format A pattern `dd.MM.yyyy` would return a string like `18.03.1993`
* @return A string, or null if `dateExpr` was a string that could not be cast to a timestamp
* @note Use specialized functions like [[year]] whenever possible as they benefit from a
* specialized implementation.
* @throws IllegalArgumentException if the `format` pattern is invalid
* @group datetime_funcs
* @since 1.5.0
*/
def date_format(dateExpr: Column, format: String): Column = withExpr {
DateFormatClass(dateExpr.expr, Literal(format))
}
/**
* Returns the date that is `days` days after `start`
*
* @param start A date, timestamp or string. If a string, the data must be in a format that
* can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param days The number of days to add to `start`, can be negative to subtract days
* @return A date, or null if `start` was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def date_add(start: Column, days: Int): Column = withExpr { DateAdd(start.expr, Literal(days)) }
/**
* Returns the date that is `days` days before `start`
*
* @param start A date, timestamp or string. If a string, the data must be in a format that
* can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param days The number of days to subtract from `start`, can be negative to add days
* @return A date, or null if `start` was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def date_sub(start: Column, days: Int): Column = withExpr { DateSub(start.expr, Literal(days)) }
/**
* Returns the number of days from `start` to `end`.
*
* Only considers the date part of the input. For example:
* {{{
* dateddiff("2018-01-10 00:00:00", "2018-01-09 23:59:59")
* // returns 1
* }}}
*
* @param end A date, timestamp or string. If a string, the data must be in a format that
* can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param start A date, timestamp or string. If a string, the data must be in a format that
* can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return An integer, or null if either `end` or `start` were strings that could not be cast to
* a date. Negative if `end` is before `start`
* @group datetime_funcs
* @since 1.5.0
*/
def datediff(end: Column, start: Column): Column = withExpr { DateDiff(end.expr, start.expr) }
/**
* Extracts the year as an integer from a given date/timestamp/string.
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def year(e: Column): Column = withExpr { Year(e.expr) }
/**
* Extracts the quarter as an integer from a given date/timestamp/string.
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def quarter(e: Column): Column = withExpr { Quarter(e.expr) }
/**
* Extracts the month as an integer from a given date/timestamp/string.
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def month(e: Column): Column = withExpr { Month(e.expr) }
/**
* Extracts the day of the week as an integer from a given date/timestamp/string.
* Ranges from 1 for a Sunday through to 7 for a Saturday
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 2.3.0
*/
def dayofweek(e: Column): Column = withExpr { DayOfWeek(e.expr) }
/**
* Extracts the day of the month as an integer from a given date/timestamp/string.
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def dayofmonth(e: Column): Column = withExpr { DayOfMonth(e.expr) }
/**
* Extracts the day of the year as an integer from a given date/timestamp/string.
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def dayofyear(e: Column): Column = withExpr { DayOfYear(e.expr) }
/**
* Extracts the hours as an integer from a given date/timestamp/string.
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def hour(e: Column): Column = withExpr { Hour(e.expr) }
/**
* Returns the last day of the month which the given date belongs to.
* For example, input "2015-07-27" returns "2015-07-31" since July 31 is the last day of the
* month in July 2015.
*
* @param e A date, timestamp or string. If a string, the data must be in a format that can be
* cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return A date, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def last_day(e: Column): Column = withExpr { LastDay(e.expr) }
/**
* Extracts the minutes as an integer from a given date/timestamp/string.
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def minute(e: Column): Column = withExpr { Minute(e.expr) }
/**
* Returns number of months between dates `start` and `end`.
*
* A whole number is returned if both inputs have the same day of month or both are the last day
* of their respective months. Otherwise, the difference is calculated assuming 31 days per month.
*
* For example:
* {{{
* months_between("2017-11-14", "2017-07-14") // returns 4.0
* months_between("2017-01-01", "2017-01-10") // returns 0.29032258
* months_between("2017-06-01", "2017-06-16 12:00:00") // returns -0.5
* }}}
*
* @param end A date, timestamp or string. If a string, the data must be in a format that can
* be cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param start A date, timestamp or string. If a string, the data must be in a format that can
* cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return A double, or null if either `end` or `start` were strings that could not be cast to a
* timestamp. Negative if `end` is before `start`
* @group datetime_funcs
* @since 1.5.0
*/
def months_between(end: Column, start: Column): Column = withExpr {
new MonthsBetween(end.expr, start.expr)
}
/**
* Returns number of months between dates `end` and `start`. If `roundOff` is set to true, the
* result is rounded off to 8 digits; it is not rounded otherwise.
* @group datetime_funcs
* @since 2.4.0
*/
def months_between(end: Column, start: Column, roundOff: Boolean): Column = withExpr {
MonthsBetween(end.expr, start.expr, lit(roundOff).expr)
}
/**
* Returns the first date which is later than the value of the `date` column that is on the
* specified day of the week.
*
* For example, `next_day('2015-07-27', "Sunday")` returns 2015-08-02 because that is the first
* Sunday after 2015-07-27.
*
* @param date A date, timestamp or string. If a string, the data must be in a format that
* can be cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param dayOfWeek Case insensitive, and accepts: "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
* @return A date, or null if `date` was a string that could not be cast to a date or if
* `dayOfWeek` was an invalid value
* @group datetime_funcs
* @since 1.5.0
*/
def next_day(date: Column, dayOfWeek: String): Column = withExpr {
NextDay(date.expr, lit(dayOfWeek).expr)
}
/**
* Extracts the seconds as an integer from a given date/timestamp/string.
* @return An integer, or null if the input was a string that could not be cast to a timestamp
* @group datetime_funcs
* @since 1.5.0
*/
def second(e: Column): Column = withExpr { Second(e.expr) }
/**
* Extracts the week number as an integer from a given date/timestamp/string.
*
* A week is considered to start on a Monday and week 1 is the first week with more than 3 days,
* as defined by ISO 8601
*
* @return An integer, or null if the input was a string that could not be cast to a date
* @group datetime_funcs
* @since 1.5.0
*/
def weekofyear(e: Column): Column = withExpr { WeekOfYear(e.expr) }
/**
* Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string
* representing the timestamp of that moment in the current system time zone in the
* yyyy-MM-dd HH:mm:ss format.
*
* @param ut A number of a type that is castable to a long, such as string or integer. Can be
* negative for timestamps before the unix epoch
* @return A string, or null if the input was a string that could not be cast to a long
* @group datetime_funcs
* @since 1.5.0
*/
def from_unixtime(ut: Column): Column = withExpr {
FromUnixTime(ut.expr, Literal("yyyy-MM-dd HH:mm:ss"))
}
/**
* Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string
* representing the timestamp of that moment in the current system time zone in the given
* format.
*
* See [[java.text.SimpleDateFormat]] for valid date and time format patterns
*
* @param ut A number of a type that is castable to a long, such as string or integer. Can be
* negative for timestamps before the unix epoch
* @param f A date time pattern that the input will be formatted to
* @return A string, or null if `ut` was a string that could not be cast to a long or `f` was
* an invalid date time pattern
* @group datetime_funcs
* @since 1.5.0
*/
def from_unixtime(ut: Column, f: String): Column = withExpr {
FromUnixTime(ut.expr, Literal(f))
}
/**
* Returns the current Unix timestamp (in seconds) as a long.
*
* @note All calls of `unix_timestamp` within the same query return the same value
* (i.e. the current timestamp is calculated at the start of query evaluation).
*
* @group datetime_funcs
* @since 1.5.0
*/
def unix_timestamp(): Column = withExpr {
UnixTimestamp(CurrentTimestamp(), Literal("yyyy-MM-dd HH:mm:ss"))
}
/**
* Converts time string in format yyyy-MM-dd HH:mm:ss to Unix timestamp (in seconds),
* using the default timezone and the default locale.
*
* @param s A date, timestamp or string. If a string, the data must be in the
* `yyyy-MM-dd HH:mm:ss` format
* @return A long, or null if the input was a string not of the correct format
* @group datetime_funcs
* @since 1.5.0
*/
def unix_timestamp(s: Column): Column = withExpr {
UnixTimestamp(s.expr, Literal("yyyy-MM-dd HH:mm:ss"))
}
/**
* Converts time string with given pattern to Unix timestamp (in seconds).
*
* See [[java.text.SimpleDateFormat]] for valid date and time format patterns
*
* @param s A date, timestamp or string. If a string, the data must be in a format that can be
* cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param p A date time pattern detailing the format of `s` when `s` is a string
* @return A long, or null if `s` was a string that could not be cast to a date or `p` was
* an invalid format
* @group datetime_funcs
* @since 1.5.0
*/
def unix_timestamp(s: Column, p: String): Column = withExpr { UnixTimestamp(s.expr, Literal(p)) }
/**
* Converts to a timestamp by casting rules to `TimestampType`.
*
* @param s A date, timestamp or string. If a string, the data must be in a format that can be
* cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return A timestamp, or null if the input was a string that could not be cast to a timestamp
* @group datetime_funcs
* @since 2.2.0
*/
def to_timestamp(s: Column): Column = withExpr {
new ParseToTimestamp(s.expr)
}
/**
* Converts time string with the given pattern to timestamp.
*
* See [[java.text.SimpleDateFormat]] for valid date and time format patterns
*
* @param s A date, timestamp or string. If a string, the data must be in a format that can be
* cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss`
* @param fmt A date time pattern detailing the format of `s` when `s` is a string
* @return A timestamp, or null if `s` was a string that could not be cast to a timestamp or
* `fmt` was an invalid format
* @group datetime_funcs
* @since 2.2.0
*/
def to_timestamp(s: Column, fmt: String): Column = withExpr {
new ParseToTimestamp(s.expr, Literal(fmt))
}
/**
* Converts the column into `DateType` by casting rules to `DateType`.
*
* @group datetime_funcs
* @since 1.5.0
*/
def to_date(e: Column): Column = withExpr { new ParseToDate(e.expr) }
/**
* Converts the column into a `DateType` with a specified format
*
* See [[java.text.SimpleDateFormat]] for valid date and time format patterns
*
* @param e A date, timestamp or string. If a string, the data must be in a format that can be
* cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param fmt A date time pattern detailing the format of `e` when `e`is a string
* @return A date, or null if `e` was a string that could not be cast to a date or `fmt` was an
* invalid format
* @group datetime_funcs
* @since 2.2.0
*/
def to_date(e: Column, fmt: String): Column = withExpr {
new ParseToDate(e.expr, Literal(fmt))
}
/**
* Returns date truncated to the unit specified by the format.
*
* For example, `trunc("2018-11-19 12:01:19", "year")` returns 2018-01-01
*
* @param date A date, timestamp or string. If a string, the data must be in a format that can be
* cast to a date, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param format: 'year', 'yyyy', 'yy' for truncate by year,
* or 'month', 'mon', 'mm' for truncate by month
*
* @return A date, or null if `date` was a string that could not be cast to a date or `format`
* was an invalid value
* @group datetime_funcs
* @since 1.5.0
*/
def trunc(date: Column, format: String): Column = withExpr {
TruncDate(date.expr, Literal(format))
}
/**
* Returns timestamp truncated to the unit specified by the format.
*
* For example, `date_tunc("2018-11-19 12:01:19", "year")` returns 2018-01-01 00:00:00
*
* @param format: 'year', 'yyyy', 'yy' for truncate by year,
* 'month', 'mon', 'mm' for truncate by month,
* 'day', 'dd' for truncate by day,
* Other options are: 'second', 'minute', 'hour', 'week', 'month', 'quarter'
* @param timestamp A date, timestamp or string. If a string, the data must be in a format that
* can be cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @return A timestamp, or null if `timestamp` was a string that could not be cast to a timestamp
* or `format` was an invalid value
* @group datetime_funcs
* @since 2.3.0
*/
def date_trunc(format: String, timestamp: Column): Column = withExpr {
TruncTimestamp(Literal(format), timestamp.expr)
}
/**
* Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in UTC, and renders
* that time as a timestamp in the given time zone. For example, 'GMT+1' would yield
* '2017-07-14 03:40:00.0'.
*
* @param ts A date, timestamp or string. If a string, the data must be in a format that can be
* cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param tz A string detailing the time zone that the input should be adjusted to, such as
* `Europe/London`, `PST` or `GMT+5`
* @return A timestamp, or null if `ts` was a string that could not be cast to a timestamp or
* `tz` was an invalid value
* @group datetime_funcs
* @since 1.5.0
*/
def from_utc_timestamp(ts: Column, tz: String): Column = withExpr {
FromUTCTimestamp(ts.expr, Literal(tz))
}
/**
* Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in UTC, and renders
* that time as a timestamp in the given time zone. For example, 'GMT+1' would yield
* '2017-07-14 03:40:00.0'.
* @group datetime_funcs
* @since 2.4.0
*/
def from_utc_timestamp(ts: Column, tz: Column): Column = withExpr {
FromUTCTimestamp(ts.expr, tz.expr)
}
/**
* Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in the given time
* zone, and renders that time as a timestamp in UTC. For example, 'GMT+1' would yield
* '2017-07-14 01:40:00.0'.
*
* @param ts A date, timestamp or string. If a string, the data must be in a format that can be
* cast to a timestamp, such as `yyyy-MM-dd` or `yyyy-MM-dd HH:mm:ss.SSSS`
* @param tz A string detailing the time zone that the input belongs to, such as `Europe/London`,
* `PST` or `GMT+5`
* @return A timestamp, or null if `ts` was a string that could not be cast to a timestamp or
* `tz` was an invalid value
* @group datetime_funcs
* @since 1.5.0
*/
def to_utc_timestamp(ts: Column, tz: String): Column = withExpr {
ToUTCTimestamp(ts.expr, Literal(tz))
}
/**
* Given a timestamp like '2017-07-14 02:40:00.0', interprets it as a time in the given time
* zone, and renders that time as a timestamp in UTC. For example, 'GMT+1' would yield
* '2017-07-14 01:40:00.0'.
* @group datetime_funcs
* @since 2.4.0
*/
def to_utc_timestamp(ts: Column, tz: Column): Column = withExpr {
ToUTCTimestamp(ts.expr, tz.expr)
}
/**
* Bucketize rows into one or more time windows given a timestamp specifying column. Window
* starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window
* [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in
* the order of months are not supported. The following example takes the average stock price for
* a one minute window every 10 seconds starting 5 seconds after the hour:
*
* {{{
* val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType
* df.groupBy(window($"timestamp", "1 minute", "10 seconds", "5 seconds"), $"stockId")
* .agg(mean("price"))
* }}}
*
* The windows will look like:
*
* {{{
* 09:00:05-09:01:05
* 09:00:15-09:01:15
* 09:00:25-09:01:25 ...
* }}}
*
* For a streaming query, you may use the function `current_timestamp` to generate windows on
* processing time.
*
* @param timeColumn The column or the expression to use as the timestamp for windowing by time.
* The time column must be of TimestampType.
* @param windowDuration A string specifying the width of the window, e.g. `10 minutes`,
* `1 second`. Check `org.apache.spark.unsafe.types.CalendarInterval` for
* valid duration identifiers. Note that the duration is a fixed length of
* time, and does not vary over time according to a calendar. For example,
* `1 day` always means 86,400,000 milliseconds, not a calendar day.
* @param slideDuration A string specifying the sliding interval of the window, e.g. `1 minute`.
* A new window will be generated every `slideDuration`. Must be less than
* or equal to the `windowDuration`. Check
* `org.apache.spark.unsafe.types.CalendarInterval` for valid duration
* identifiers. This duration is likewise absolute, and does not vary
* according to a calendar.
* @param startTime The offset with respect to 1970-01-01 00:00:00 UTC with which to start
* window intervals. For example, in order to have hourly tumbling windows that
* start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide
* `startTime` as `15 minutes`.
*
* @group datetime_funcs
* @since 2.0.0
*/
def window(
timeColumn: Column,
windowDuration: String,
slideDuration: String,
startTime: String): Column = {
withExpr {
TimeWindow(timeColumn.expr, windowDuration, slideDuration, startTime)
}.as("window")
}
/**
* Bucketize rows into one or more time windows given a timestamp specifying column. Window
* starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window
* [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in
* the order of months are not supported. The windows start beginning at 1970-01-01 00:00:00 UTC.
* The following example takes the average stock price for a one minute window every 10 seconds:
*
* {{{
* val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType
* df.groupBy(window($"timestamp", "1 minute", "10 seconds"), $"stockId")
* .agg(mean("price"))
* }}}
*
* The windows will look like:
*
* {{{
* 09:00:00-09:01:00
* 09:00:10-09:01:10
* 09:00:20-09:01:20 ...
* }}}
*
* For a streaming query, you may use the function `current_timestamp` to generate windows on
* processing time.
*
* @param timeColumn The column or the expression to use as the timestamp for windowing by time.
* The time column must be of TimestampType.
* @param windowDuration A string specifying the width of the window, e.g. `10 minutes`,
* `1 second`. Check `org.apache.spark.unsafe.types.CalendarInterval` for
* valid duration identifiers. Note that the duration is a fixed length of
* time, and does not vary over time according to a calendar. For example,
* `1 day` always means 86,400,000 milliseconds, not a calendar day.
* @param slideDuration A string specifying the sliding interval of the window, e.g. `1 minute`.
* A new window will be generated every `slideDuration`. Must be less than
* or equal to the `windowDuration`. Check
* `org.apache.spark.unsafe.types.CalendarInterval` for valid duration
* identifiers. This duration is likewise absolute, and does not vary
* according to a calendar.
*
* @group datetime_funcs
* @since 2.0.0
*/
def window(timeColumn: Column, windowDuration: String, slideDuration: String): Column = {
window(timeColumn, windowDuration, slideDuration, "0 second")
}
/**
* Generates tumbling time windows given a timestamp specifying column. Window
* starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window
* [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in
* the order of months are not supported. The windows start beginning at 1970-01-01 00:00:00 UTC.
* The following example takes the average stock price for a one minute tumbling window:
*
* {{{
* val df = ... // schema => timestamp: TimestampType, stockId: StringType, price: DoubleType
* df.groupBy(window($"timestamp", "1 minute"), $"stockId")
* .agg(mean("price"))
* }}}
*
* The windows will look like:
*
* {{{
* 09:00:00-09:01:00
* 09:01:00-09:02:00
* 09:02:00-09:03:00 ...
* }}}
*
* For a streaming query, you may use the function `current_timestamp` to generate windows on
* processing time.
*
* @param timeColumn The column or the expression to use as the timestamp for windowing by time.
* The time column must be of TimestampType.
* @param windowDuration A string specifying the width of the window, e.g. `10 minutes`,
* `1 second`. Check `org.apache.spark.unsafe.types.CalendarInterval` for
* valid duration identifiers.
*
* @group datetime_funcs
* @since 2.0.0
*/
def window(timeColumn: Column, windowDuration: String): Column = {
window(timeColumn, windowDuration, windowDuration, "0 second")
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Collection functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns null if the array is null, true if the array contains `value`, and false otherwise.
* @group collection_funcs
* @since 1.5.0
*/
def array_contains(column: Column, value: Any): Column = withExpr {
ArrayContains(column.expr, lit(value).expr)
}
/**
* Returns `true` if `a1` and `a2` have at least one non-null element in common. If not and both
* the arrays are non-empty and any of them contains a `null`, it returns `null`. It returns
* `false` otherwise.
* @group collection_funcs
* @since 2.4.0
*/
def arrays_overlap(a1: Column, a2: Column): Column = withExpr {
ArraysOverlap(a1.expr, a2.expr)
}
/**
* Returns an array containing all the elements in `x` from index `start` (or starting from the
* end if `start` is negative) with the specified `length`.
*
* @param x the array column to be sliced
* @param start the starting index
* @param length the length of the slice
*
* @group collection_funcs
* @since 2.4.0
*/
def slice(x: Column, start: Int, length: Int): Column = withExpr {
Slice(x.expr, Literal(start), Literal(length))
}
/**
* Concatenates the elements of `column` using the `delimiter`. Null values are replaced with
* `nullReplacement`.
* @group collection_funcs
* @since 2.4.0
*/
def array_join(column: Column, delimiter: String, nullReplacement: String): Column = withExpr {
ArrayJoin(column.expr, Literal(delimiter), Some(Literal(nullReplacement)))
}
/**
* Concatenates the elements of `column` using the `delimiter`.
* @group collection_funcs
* @since 2.4.0
*/
def array_join(column: Column, delimiter: String): Column = withExpr {
ArrayJoin(column.expr, Literal(delimiter), None)
}
/**
* Concatenates multiple input columns together into a single column.
* The function works with strings, binary and compatible array columns.
*
* @group collection_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def concat(exprs: Column*): Column = withExpr { Concat(exprs.map(_.expr)) }
/**
* Locates the position of the first occurrence of the value in the given array as long.
* Returns null if either of the arguments are null.
*
* @note The position is not zero based, but 1 based index. Returns 0 if value
* could not be found in array.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_position(column: Column, value: Any): Column = withExpr {
ArrayPosition(column.expr, lit(value).expr)
}
/**
* Returns element of array at given index in value if column is array. Returns value for
* the given key in value if column is map.
*
* @group collection_funcs
* @since 2.4.0
*/
def element_at(column: Column, value: Any): Column = withExpr {
ElementAt(column.expr, lit(value).expr)
}
/**
* Sorts the input array in ascending order. The elements of the input array must be orderable.
* Null elements will be placed at the end of the returned array.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_sort(e: Column): Column = withExpr { ArraySort(e.expr) }
/**
* Remove all elements that equal to element from the given array.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_remove(column: Column, element: Any): Column = withExpr {
ArrayRemove(column.expr, lit(element).expr)
}
/**
* Removes duplicate values from the array.
* @group collection_funcs
* @since 2.4.0
*/
def array_distinct(e: Column): Column = withExpr { ArrayDistinct(e.expr) }
/**
* Returns an array of the elements in the intersection of the given two arrays,
* without duplicates.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_intersect(col1: Column, col2: Column): Column = withExpr {
ArrayIntersect(col1.expr, col2.expr)
}
/**
* Returns an array of the elements in the union of the given two arrays, without duplicates.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_union(col1: Column, col2: Column): Column = withExpr {
ArrayUnion(col1.expr, col2.expr)
}
/**
* Returns an array of the elements in the first array but not in the second array,
* without duplicates. The order of elements in the result is not determined
*
* @group collection_funcs
* @since 2.4.0
*/
def array_except(col1: Column, col2: Column): Column = withExpr {
ArrayExcept(col1.expr, col2.expr)
}
/**
* Creates a new row for each element in the given array or map column.
*
* @group collection_funcs
* @since 1.3.0
*/
def explode(e: Column): Column = withExpr { Explode(e.expr) }
/**
* Creates a new row for each element in the given array or map column.
* Unlike explode, if the array/map is null or empty then null is produced.
*
* @group collection_funcs
* @since 2.2.0
*/
def explode_outer(e: Column): Column = withExpr { GeneratorOuter(Explode(e.expr)) }
/**
* Creates a new row for each element with position in the given array or map column.
*
* @group collection_funcs
* @since 2.1.0
*/
def posexplode(e: Column): Column = withExpr { PosExplode(e.expr) }
/**
* Creates a new row for each element with position in the given array or map column.
* Unlike posexplode, if the array/map is null or empty then the row (null, null) is produced.
*
* @group collection_funcs
* @since 2.2.0
*/
def posexplode_outer(e: Column): Column = withExpr { GeneratorOuter(PosExplode(e.expr)) }
/**
* Extracts json object from a json string based on json path specified, and returns json string
* of the extracted json object. It will return null if the input json string is invalid.
*
* @group collection_funcs
* @since 1.6.0
*/
def get_json_object(e: Column, path: String): Column = withExpr {
GetJsonObject(e.expr, lit(path).expr)
}
/**
* Creates a new row for a json column according to the given field names.
*
* @group collection_funcs
* @since 1.6.0
*/
@scala.annotation.varargs
def json_tuple(json: Column, fields: String*): Column = withExpr {
require(fields.nonEmpty, "at least 1 field name should be given.")
JsonTuple(json.expr +: fields.map(Literal.apply))
}
/**
* (Scala-specific) Parses a column containing a JSON string into a `StructType` with the
* specified schema. Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string
* @param options options to control how the json is parsed. Accepts the same options as the
* json data source.
*
* @group collection_funcs
* @since 2.1.0
*/
def from_json(e: Column, schema: StructType, options: Map[String, String]): Column =
from_json(e, schema.asInstanceOf[DataType], options)
/**
* (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string
* @param options options to control how the json is parsed. accepts the same options and the
* json data source.
*
* @group collection_funcs
* @since 2.2.0
*/
def from_json(e: Column, schema: DataType, options: Map[String, String]): Column = withExpr {
JsonToStructs(schema, options, e.expr)
}
/**
* (Java-specific) Parses a column containing a JSON string into a `StructType` with the
* specified schema. Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string
* @param options options to control how the json is parsed. accepts the same options and the
* json data source.
*
* @group collection_funcs
* @since 2.1.0
*/
def from_json(e: Column, schema: StructType, options: java.util.Map[String, String]): Column =
from_json(e, schema, options.asScala.toMap)
/**
* (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string
* @param options options to control how the json is parsed. accepts the same options and the
* json data source.
*
* @group collection_funcs
* @since 2.2.0
*/
def from_json(e: Column, schema: DataType, options: java.util.Map[String, String]): Column =
from_json(e, schema, options.asScala.toMap)
/**
* Parses a column containing a JSON string into a `StructType` with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string
*
* @group collection_funcs
* @since 2.1.0
*/
def from_json(e: Column, schema: StructType): Column =
from_json(e, schema, Map.empty[String, String])
/**
* Parses a column containing a JSON string into a `MapType` with `StringType` as keys type,
* `StructType` or `ArrayType` with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string
*
* @group collection_funcs
* @since 2.2.0
*/
def from_json(e: Column, schema: DataType): Column =
from_json(e, schema, Map.empty[String, String])
/**
* (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string as a json string. In Spark 2.1,
* the user-provided schema has to be in JSON format. Since Spark 2.2, the DDL
* format is also supported for the schema.
*
* @group collection_funcs
* @since 2.1.0
*/
def from_json(e: Column, schema: String, options: java.util.Map[String, String]): Column = {
from_json(e, schema, options.asScala.toMap)
}
/**
* (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string as a json string, it could be a
* JSON format string or a DDL-formatted string.
*
* @group collection_funcs
* @since 2.3.0
*/
def from_json(e: Column, schema: String, options: Map[String, String]): Column = {
val dataType = try {
DataType.fromJson(schema)
} catch {
case NonFatal(_) => DataType.fromDDL(schema)
}
from_json(e, dataType, options)
}
/**
* (Scala-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` of `StructType`s with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string
*
* @group collection_funcs
* @since 2.4.0
*/
def from_json(e: Column, schema: Column): Column = {
from_json(e, schema, Map.empty[String, String].asJava)
}
/**
* (Java-specific) Parses a column containing a JSON string into a `MapType` with `StringType`
* as keys type, `StructType` or `ArrayType` of `StructType`s with the specified schema.
* Returns `null`, in the case of an unparseable string.
*
* @param e a string column containing JSON data.
* @param schema the schema to use when parsing the json string
* @param options options to control how the json is parsed. accepts the same options and the
* json data source.
*
* @group collection_funcs
* @since 2.4.0
*/
def from_json(e: Column, schema: Column, options: java.util.Map[String, String]): Column = {
withExpr(new JsonToStructs(e.expr, schema.expr, options.asScala.toMap))
}
/**
* Parses a JSON string and infers its schema in DDL format.
*
* @param json a JSON string.
*
* @group collection_funcs
* @since 2.4.0
*/
def schema_of_json(json: String): Column = schema_of_json(lit(json))
/**
* Parses a JSON string and infers its schema in DDL format.
*
* @param json a string literal containing a JSON string.
*
* @group collection_funcs
* @since 2.4.0
*/
def schema_of_json(json: Column): Column = withExpr(new SchemaOfJson(json.expr))
/**
* (Scala-specific) Converts a column containing a `StructType`, `ArrayType` or
* a `MapType` into a JSON string with the specified schema.
* Throws an exception, in the case of an unsupported type.
*
* @param e a column containing a struct, an array or a map.
* @param options options to control how the struct column is converted into a json string.
* accepts the same options and the json data source.
*
* @group collection_funcs
* @since 2.1.0
*/
def to_json(e: Column, options: Map[String, String]): Column = withExpr {
StructsToJson(options, e.expr)
}
/**
* (Java-specific) Converts a column containing a `StructType`, `ArrayType` or
* a `MapType` into a JSON string with the specified schema.
* Throws an exception, in the case of an unsupported type.
*
* @param e a column containing a struct, an array or a map.
* @param options options to control how the struct column is converted into a json string.
* accepts the same options and the json data source.
*
* @group collection_funcs
* @since 2.1.0
*/
def to_json(e: Column, options: java.util.Map[String, String]): Column =
to_json(e, options.asScala.toMap)
/**
* Converts a column containing a `StructType`, `ArrayType` or
* a `MapType` into a JSON string with the specified schema.
* Throws an exception, in the case of an unsupported type.
*
* @param e a column containing a struct, an array or a map.
*
* @group collection_funcs
* @since 2.1.0
*/
def to_json(e: Column): Column =
to_json(e, Map.empty[String, String])
/**
* Returns length of array or map.
*
* @group collection_funcs
* @since 1.5.0
*/
def size(e: Column): Column = withExpr { Size(e.expr) }
/**
* Sorts the input array for the given column in ascending order,
* according to the natural ordering of the array elements.
* Null elements will be placed at the beginning of the returned array.
*
* @group collection_funcs
* @since 1.5.0
*/
def sort_array(e: Column): Column = sort_array(e, asc = true)
/**
* Sorts the input array for the given column in ascending or descending order,
* according to the natural ordering of the array elements.
* Null elements will be placed at the beginning of the returned array in ascending order or
* at the end of the returned array in descending order.
*
* @group collection_funcs
* @since 1.5.0
*/
def sort_array(e: Column, asc: Boolean): Column = withExpr { SortArray(e.expr, lit(asc).expr) }
/**
* Returns the minimum value in the array.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_min(e: Column): Column = withExpr { ArrayMin(e.expr) }
/**
* Returns the maximum value in the array.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_max(e: Column): Column = withExpr { ArrayMax(e.expr) }
/**
* Returns a random permutation of the given array.
*
* @note The function is non-deterministic.
*
* @group collection_funcs
* @since 2.4.0
*/
def shuffle(e: Column): Column = withExpr { Shuffle(e.expr) }
/**
* Returns a reversed string or an array with reverse order of elements.
* @group collection_funcs
* @since 1.5.0
*/
def reverse(e: Column): Column = withExpr { Reverse(e.expr) }
/**
* Creates a single array from an array of arrays. If a structure of nested arrays is deeper than
* two levels, only one level of nesting is removed.
* @group collection_funcs
* @since 2.4.0
*/
def flatten(e: Column): Column = withExpr { Flatten(e.expr) }
/**
* Generate a sequence of integers from start to stop, incrementing by step.
*
* @group collection_funcs
* @since 2.4.0
*/
def sequence(start: Column, stop: Column, step: Column): Column = withExpr {
new Sequence(start.expr, stop.expr, step.expr)
}
/**
* Generate a sequence of integers from start to stop,
* incrementing by 1 if start is less than or equal to stop, otherwise -1.
*
* @group collection_funcs
* @since 2.4.0
*/
def sequence(start: Column, stop: Column): Column = withExpr {
new Sequence(start.expr, stop.expr)
}
/**
* Creates an array containing the left argument repeated the number of times given by the
* right argument.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_repeat(left: Column, right: Column): Column = withExpr {
ArrayRepeat(left.expr, right.expr)
}
/**
* Creates an array containing the left argument repeated the number of times given by the
* right argument.
*
* @group collection_funcs
* @since 2.4.0
*/
def array_repeat(e: Column, count: Int): Column = array_repeat(e, lit(count))
/**
* Returns an unordered array containing the keys of the map.
* @group collection_funcs
* @since 2.3.0
*/
def map_keys(e: Column): Column = withExpr { MapKeys(e.expr) }
/**
* Returns an unordered array containing the values of the map.
* @group collection_funcs
* @since 2.3.0
*/
def map_values(e: Column): Column = withExpr { MapValues(e.expr) }
/**
* Returns a map created from the given array of entries.
* @group collection_funcs
* @since 2.4.0
*/
def map_from_entries(e: Column): Column = withExpr { MapFromEntries(e.expr) }
/**
* Returns a merged array of structs in which the N-th struct contains all N-th values of input
* arrays.
* @group collection_funcs
* @since 2.4.0
*/
@scala.annotation.varargs
def arrays_zip(e: Column*): Column = withExpr { ArraysZip(e.map(_.expr)) }
/**
* Returns the union of all the given maps.
* @group collection_funcs
* @since 2.4.0
*/
@scala.annotation.varargs
def map_concat(cols: Column*): Column = withExpr { MapConcat(cols.map(_.expr)) }
// scalastyle:off line.size.limit
// scalastyle:off parameter.number
/* Use the following code to generate:
(0 to 10).foreach { x =>
val types = (1 to x).foldRight("RT")((i, s) => {s"A$i, $s"})
val typeTags = (1 to x).map(i => s"A$i: TypeTag").foldLeft("RT: TypeTag")(_ + ", " + _)
val inputSchemas = (1 to x).foldRight("Nil")((i, s) => {s"Try(ScalaReflection.schemaFor(typeTag[A$i])).toOption :: $s"})
println(s"""
|/**
| * Defines a Scala closure of $x arguments as user-defined function (UDF).
| * The data types are automatically inferred based on the Scala closure's
| * signature. By default the returned UDF is deterministic. To change it to
| * nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
| *
| * @group udf_funcs
| * @since 1.3.0
| */
|def udf[$typeTags](f: Function$x[$types]): UserDefinedFunction = {
| val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
| val inputSchemas = $inputSchemas
| val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
| if (nullable) udf else udf.asNonNullable()
|}""".stripMargin)
}
(0 to 10).foreach { i =>
val extTypeArgs = (0 to i).map(_ => "_").mkString(", ")
val anyTypeArgs = (0 to i).map(_ => "Any").mkString(", ")
val anyCast = s".asInstanceOf[UDF$i[$anyTypeArgs]]"
val anyParams = (1 to i).map(_ => "_: Any").mkString(", ")
val funcCall = if (i == 0) "() => func" else "func"
println(s"""
|/**
| * Defines a Java UDF$i instance as user-defined function (UDF).
| * The caller must specify the output data type, and there is no automatic input type coercion.
| * By default the returned UDF is deterministic. To change it to nondeterministic, call the
| * API `UserDefinedFunction.asNondeterministic()`.
| *
| * @group udf_funcs
| * @since 2.3.0
| */
|def udf(f: UDF$i[$extTypeArgs], returnType: DataType): UserDefinedFunction = {
| val func = f$anyCast.call($anyParams)
| SparkUserDefinedFunction.create($funcCall, returnType, inputSchemas = Seq.fill($i)(None))
|}""".stripMargin)
}
*/
//////////////////////////////////////////////////////////////////////////////////////////////
// Scala UDF functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Defines a Scala closure of 0 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag](f: Function0[RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 1 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag](f: Function1[A1, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 2 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag](f: Function2[A1, A2, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 3 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag](f: Function3[A1, A2, A3, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A3])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 4 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag](f: Function4[A1, A2, A3, A4, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A3])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A4])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 5 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag](f: Function5[A1, A2, A3, A4, A5, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A3])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A4])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A5])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 6 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag](f: Function6[A1, A2, A3, A4, A5, A6, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A3])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A4])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A5])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A6])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 7 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag](f: Function7[A1, A2, A3, A4, A5, A6, A7, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A3])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A4])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A5])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A6])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A7])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 8 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag](f: Function8[A1, A2, A3, A4, A5, A6, A7, A8, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A3])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A4])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A5])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A6])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A7])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A8])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 9 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag](f: Function9[A1, A2, A3, A4, A5, A6, A7, A8, A9, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A3])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A4])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A5])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A6])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A7])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A8])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A9])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
/**
* Defines a Scala closure of 10 arguments as user-defined function (UDF).
* The data types are automatically inferred based on the Scala closure's
* signature. By default the returned UDF is deterministic. To change it to
* nondeterministic, call the API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 1.3.0
*/
def udf[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag](f: Function10[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, RT]): UserDefinedFunction = {
val ScalaReflection.Schema(dataType, nullable) = ScalaReflection.schemaFor[RT]
val inputSchemas = Try(ScalaReflection.schemaFor(typeTag[A1])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A2])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A3])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A4])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A5])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A6])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A7])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A8])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A9])).toOption :: Try(ScalaReflection.schemaFor(typeTag[A10])).toOption :: Nil
val udf = SparkUserDefinedFunction.create(f, dataType, inputSchemas)
if (nullable) udf else udf.asNonNullable()
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Java UDF functions
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Defines a Java UDF0 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF0[_], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF0[Any]].call()
SparkUserDefinedFunction.create(() => func, returnType, inputSchemas = Seq.fill(0)(None))
}
/**
* Defines a Java UDF1 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF1[_, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF1[Any, Any]].call(_: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(1)(None))
}
/**
* Defines a Java UDF2 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF2[_, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF2[Any, Any, Any]].call(_: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(2)(None))
}
/**
* Defines a Java UDF3 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF3[_, _, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF3[Any, Any, Any, Any]].call(_: Any, _: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(3)(None))
}
/**
* Defines a Java UDF4 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF4[_, _, _, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF4[Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(4)(None))
}
/**
* Defines a Java UDF5 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF5[_, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF5[Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(5)(None))
}
/**
* Defines a Java UDF6 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF6[_, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF6[Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(6)(None))
}
/**
* Defines a Java UDF7 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF7[_, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF7[Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(7)(None))
}
/**
* Defines a Java UDF8 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF8[_, _, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF8[Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(8)(None))
}
/**
* Defines a Java UDF9 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF9[_, _, _, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF9[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(9)(None))
}
/**
* Defines a Java UDF10 instance as user-defined function (UDF).
* The caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @group udf_funcs
* @since 2.3.0
*/
def udf(f: UDF10[_, _, _, _, _, _, _, _, _, _, _], returnType: DataType): UserDefinedFunction = {
val func = f.asInstanceOf[UDF10[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
SparkUserDefinedFunction.create(func, returnType, inputSchemas = Seq.fill(10)(None))
}
// scalastyle:on parameter.number
// scalastyle:on line.size.limit
/**
* Defines a deterministic user-defined function (UDF) using a Scala closure. For this variant,
* the caller must specify the output data type, and there is no automatic input type coercion.
* By default the returned UDF is deterministic. To change it to nondeterministic, call the
* API `UserDefinedFunction.asNondeterministic()`.
*
* @param f A closure in Scala
* @param dataType The output data type of the UDF
*
* @group udf_funcs
* @since 2.0.0
*/
def udf(f: AnyRef, dataType: DataType): UserDefinedFunction = {
// TODO: should call SparkUserDefinedFunction.create() instead but inputSchemas is currently
// unavailable. We may need to create type-safe overloaded versions of udf() methods.
new UserDefinedFunction(f, dataType, inputTypes = None)
}
/**
* Call an user-defined function.
* Example:
* {{{
* import org.apache.spark.sql._
*
* val df = Seq(("id1", 1), ("id2", 4), ("id3", 5)).toDF("id", "value")
* val spark = df.sparkSession
* spark.udf.register("simpleUDF", (v: Int) => v * v)
* df.select($"id", callUDF("simpleUDF", $"value"))
* }}}
*
* @group udf_funcs
* @since 1.5.0
*/
@scala.annotation.varargs
def callUDF(udfName: String, cols: Column*): Column = withExpr {
UnresolvedFunction(udfName, cols.map(_.expr), isDistinct = false)
}
}