All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.sql.DataFrameStatFunctions.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql

import java.{lang => jl, util => ju}

import scala.collection.JavaConverters._

import org.apache.spark.annotation.Stable
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.execution.stat._
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.types._
import org.apache.spark.util.sketch.{BloomFilter, CountMinSketch}

/**
 * Statistic functions for `DataFrame`s.
 *
 * @since 1.4.0
 */
@Stable
final class DataFrameStatFunctions private[sql](df: DataFrame) {

  /**
   * Calculates the approximate quantiles of a numerical column of a DataFrame.
   *
   * The result of this algorithm has the following deterministic bound:
   * If the DataFrame has N elements and if we request the quantile at probability `p` up to error
   * `err`, then the algorithm will return a sample `x` from the DataFrame so that the *exact* rank
   * of `x` is close to (p * N).
   * More precisely,
   *
   * {{{
   *   floor((p - err) * N) <= rank(x) <= ceil((p + err) * N)
   * }}}
   *
   * This method implements a variation of the Greenwald-Khanna algorithm (with some speed
   * optimizations).
   * The algorithm was first present in 
   * Space-efficient Online Computation of Quantile Summaries by Greenwald and Khanna.
   *
   * @param col the name of the numerical column
   * @param probabilities a list of quantile probabilities
   *   Each number must belong to [0, 1].
   *   For example 0 is the minimum, 0.5 is the median, 1 is the maximum.
   * @param relativeError The relative target precision to achieve (greater than or equal to 0).
   *   If set to zero, the exact quantiles are computed, which could be very expensive.
   *   Note that values greater than 1 are accepted but give the same result as 1.
   * @return the approximate quantiles at the given probabilities
   *
   * @note null and NaN values will be removed from the numerical column before calculation. If
   *   the dataframe is empty or the column only contains null or NaN, an empty array is returned.
   *
   * @since 2.0.0
   */
  def approxQuantile(
      col: String,
      probabilities: Array[Double],
      relativeError: Double): Array[Double] = {
    approxQuantile(Array(col), probabilities, relativeError).head
  }

  /**
   * Calculates the approximate quantiles of numerical columns of a DataFrame.
   * @see `approxQuantile(col:Str* approxQuantile)` for detailed description.
   *
   * @param cols the names of the numerical columns
   * @param probabilities a list of quantile probabilities
   *   Each number must belong to [0, 1].
   *   For example 0 is the minimum, 0.5 is the median, 1 is the maximum.
   * @param relativeError The relative target precision to achieve (greater than or equal to 0).
   *   If set to zero, the exact quantiles are computed, which could be very expensive.
   *   Note that values greater than 1 are accepted but give the same result as 1.
   * @return the approximate quantiles at the given probabilities of each column
   *
   * @note null and NaN values will be ignored in numerical columns before calculation. For
   *   columns only containing null or NaN values, an empty array is returned.
   *
   * @since 2.2.0
   */
  def approxQuantile(
      cols: Array[String],
      probabilities: Array[Double],
      relativeError: Double): Array[Array[Double]] = {
    StatFunctions.multipleApproxQuantiles(
      df.select(cols.map(col): _*),
      cols,
      probabilities,
      relativeError).map(_.toArray).toArray
  }


  /**
   * Python-friendly version of [[approxQuantile()]]
   */
  private[spark] def approxQuantile(
      cols: List[String],
      probabilities: List[Double],
      relativeError: Double): java.util.List[java.util.List[Double]] = {
    approxQuantile(cols.toArray, probabilities.toArray, relativeError)
      .map(_.toList.asJava).toList.asJava
  }

  /**
   * Calculate the sample covariance of two numerical columns of a DataFrame.
   * @param col1 the name of the first column
   * @param col2 the name of the second column
   * @return the covariance of the two columns.
   *
   * {{{
   *    val df = sc.parallelize(0 until 10).toDF("id").withColumn("rand1", rand(seed=10))
   *      .withColumn("rand2", rand(seed=27))
   *    df.stat.cov("rand1", "rand2")
   *    res1: Double = 0.065...
   * }}}
   *
   * @since 1.4.0
   */
  def cov(col1: String, col2: String): Double = {
    StatFunctions.calculateCov(df, Seq(col1, col2))
  }

  /**
   * Calculates the correlation of two columns of a DataFrame. Currently only supports the Pearson
   * Correlation Coefficient. For Spearman Correlation, consider using RDD methods found in
   * MLlib's Statistics.
   *
   * @param col1 the name of the column
   * @param col2 the name of the column to calculate the correlation against
   * @return The Pearson Correlation Coefficient as a Double.
   *
   * {{{
   *    val df = sc.parallelize(0 until 10).toDF("id").withColumn("rand1", rand(seed=10))
   *      .withColumn("rand2", rand(seed=27))
   *    df.stat.corr("rand1", "rand2")
   *    res1: Double = 0.613...
   * }}}
   *
   * @since 1.4.0
   */
  def corr(col1: String, col2: String, method: String): Double = {
    require(method == "pearson", "Currently only the calculation of the Pearson Correlation " +
      "coefficient is supported.")
    StatFunctions.pearsonCorrelation(df, Seq(col1, col2))
  }

  /**
   * Calculates the Pearson Correlation Coefficient of two columns of a DataFrame.
   *
   * @param col1 the name of the column
   * @param col2 the name of the column to calculate the correlation against
   * @return The Pearson Correlation Coefficient as a Double.
   *
   * {{{
   *    val df = sc.parallelize(0 until 10).toDF("id").withColumn("rand1", rand(seed=10))
   *      .withColumn("rand2", rand(seed=27))
   *    df.stat.corr("rand1", "rand2", "pearson")
   *    res1: Double = 0.613...
   * }}}
   *
   * @since 1.4.0
   */
  def corr(col1: String, col2: String): Double = {
    corr(col1, col2, "pearson")
  }

  /**
   * Computes a pair-wise frequency table of the given columns. Also known as a contingency table.
   * The first column of each row will be the distinct values of `col1` and the column names will
   * be the distinct values of `col2`. The name of the first column will be `col1_col2`. Counts
   * will be returned as `Long`s. Pairs that have no occurrences will have zero as their counts.
   * Null elements will be replaced by "null", and back ticks will be dropped from elements if they
   * exist.
   *
   * @param col1 The name of the first column. Distinct items will make the first item of
   *             each row.
   * @param col2 The name of the second column. Distinct items will make the column names
   *             of the DataFrame.
   * @return A DataFrame containing for the contingency table.
   *
   * {{{
   *    val df = spark.createDataFrame(Seq((1, 1), (1, 2), (2, 1), (2, 1), (2, 3), (3, 2), (3, 3)))
   *      .toDF("key", "value")
   *    val ct = df.stat.crosstab("key", "value")
   *    ct.show()
   *    +---------+---+---+---+
   *    |key_value|  1|  2|  3|
   *    +---------+---+---+---+
   *    |        2|  2|  0|  1|
   *    |        1|  1|  1|  0|
   *    |        3|  0|  1|  1|
   *    +---------+---+---+---+
   * }}}
   *
   * @since 1.4.0
   */
  def crosstab(col1: String, col2: String): DataFrame = {
    StatFunctions.crossTabulate(df, col1, col2)
  }

  /**
   * Finding frequent items for columns, possibly with false positives. Using the
   * frequent element count algorithm described in
   * here, proposed by Karp,
   * Schenker, and Papadimitriou.
   * The `support` should be greater than 1e-4.
   *
   * This function is meant for exploratory data analysis, as we make no guarantee about the
   * backward compatibility of the schema of the resulting `DataFrame`.
   *
   * @param cols the names of the columns to search frequent items in.
   * @param support The minimum frequency for an item to be considered `frequent`. Should be greater
   *                than 1e-4.
   * @return A Local DataFrame with the Array of frequent items for each column.
   *
   * {{{
   *    val rows = Seq.tabulate(100) { i =>
   *      if (i % 2 == 0) (1, -1.0) else (i, i * -1.0)
   *    }
   *    val df = spark.createDataFrame(rows).toDF("a", "b")
   *    // find the items with a frequency greater than 0.4 (observed 40% of the time) for columns
   *    // "a" and "b"
   *    val freqSingles = df.stat.freqItems(Array("a", "b"), 0.4)
   *    freqSingles.show()
   *    +-----------+-------------+
   *    |a_freqItems|  b_freqItems|
   *    +-----------+-------------+
   *    |    [1, 99]|[-1.0, -99.0]|
   *    +-----------+-------------+
   *    // find the pair of items with a frequency greater than 0.1 in columns "a" and "b"
   *    val pairDf = df.select(struct("a", "b").as("a-b"))
   *    val freqPairs = pairDf.stat.freqItems(Array("a-b"), 0.1)
   *    freqPairs.select(explode($"a-b_freqItems").as("freq_ab")).show()
   *    +----------+
   *    |   freq_ab|
   *    +----------+
   *    |  [1,-1.0]|
   *    |   ...    |
   *    +----------+
   * }}}
   *
   * @since 1.4.0
   */
  def freqItems(cols: Array[String], support: Double): DataFrame = {
    FrequentItems.singlePassFreqItems(df, cols, support)
  }

  /**
   * Finding frequent items for columns, possibly with false positives. Using the
   * frequent element count algorithm described in
   * here, proposed by Karp,
   * Schenker, and Papadimitriou.
   * Uses a `default` support of 1%.
   *
   * This function is meant for exploratory data analysis, as we make no guarantee about the
   * backward compatibility of the schema of the resulting `DataFrame`.
   *
   * @param cols the names of the columns to search frequent items in.
   * @return A Local DataFrame with the Array of frequent items for each column.
   *
   * @since 1.4.0
   */
  def freqItems(cols: Array[String]): DataFrame = {
    FrequentItems.singlePassFreqItems(df, cols, 0.01)
  }

  /**
   * (Scala-specific) Finding frequent items for columns, possibly with false positives. Using the
   * frequent element count algorithm described in
   * here, proposed by Karp, Schenker,
   * and Papadimitriou.
   *
   * This function is meant for exploratory data analysis, as we make no guarantee about the
   * backward compatibility of the schema of the resulting `DataFrame`.
   *
   * @param cols the names of the columns to search frequent items in.
   * @return A Local DataFrame with the Array of frequent items for each column.
   *
   * {{{
   *    val rows = Seq.tabulate(100) { i =>
   *      if (i % 2 == 0) (1, -1.0) else (i, i * -1.0)
   *    }
   *    val df = spark.createDataFrame(rows).toDF("a", "b")
   *    // find the items with a frequency greater than 0.4 (observed 40% of the time) for columns
   *    // "a" and "b"
   *    val freqSingles = df.stat.freqItems(Seq("a", "b"), 0.4)
   *    freqSingles.show()
   *    +-----------+-------------+
   *    |a_freqItems|  b_freqItems|
   *    +-----------+-------------+
   *    |    [1, 99]|[-1.0, -99.0]|
   *    +-----------+-------------+
   *    // find the pair of items with a frequency greater than 0.1 in columns "a" and "b"
   *    val pairDf = df.select(struct("a", "b").as("a-b"))
   *    val freqPairs = pairDf.stat.freqItems(Seq("a-b"), 0.1)
   *    freqPairs.select(explode($"a-b_freqItems").as("freq_ab")).show()
   *    +----------+
   *    |   freq_ab|
   *    +----------+
   *    |  [1,-1.0]|
   *    |   ...    |
   *    +----------+
   * }}}
   *
   * @since 1.4.0
   */
  def freqItems(cols: Seq[String], support: Double): DataFrame = {
    FrequentItems.singlePassFreqItems(df, cols, support)
  }

  /**
   * (Scala-specific) Finding frequent items for columns, possibly with false positives. Using the
   * frequent element count algorithm described in
   * here, proposed by Karp, Schenker,
   * and Papadimitriou.
   * Uses a `default` support of 1%.
   *
   * This function is meant for exploratory data analysis, as we make no guarantee about the
   * backward compatibility of the schema of the resulting `DataFrame`.
   *
   * @param cols the names of the columns to search frequent items in.
   * @return A Local DataFrame with the Array of frequent items for each column.
   *
   * @since 1.4.0
   */
  def freqItems(cols: Seq[String]): DataFrame = {
    FrequentItems.singlePassFreqItems(df, cols, 0.01)
  }

  /**
   * Returns a stratified sample without replacement based on the fraction given on each stratum.
   * @param col column that defines strata
   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
   *                  its fraction as zero.
   * @param seed random seed
   * @tparam T stratum type
   * @return a new `DataFrame` that represents the stratified sample
   *
   * {{{
   *    val df = spark.createDataFrame(Seq((1, 1), (1, 2), (2, 1), (2, 1), (2, 3), (3, 2),
   *      (3, 3))).toDF("key", "value")
   *    val fractions = Map(1 -> 1.0, 3 -> 0.5)
   *    df.stat.sampleBy("key", fractions, 36L).show()
   *    +---+-----+
   *    |key|value|
   *    +---+-----+
   *    |  1|    1|
   *    |  1|    2|
   *    |  3|    2|
   *    +---+-----+
   * }}}
   *
   * @since 1.5.0
   */
  def sampleBy[T](col: String, fractions: Map[T, Double], seed: Long): DataFrame = {
    sampleBy(Column(col), fractions, seed)
  }

  /**
   * Returns a stratified sample without replacement based on the fraction given on each stratum.
   * @param col column that defines strata
   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
   *                  its fraction as zero.
   * @param seed random seed
   * @tparam T stratum type
   * @return a new `DataFrame` that represents the stratified sample
   *
   * @since 1.5.0
   */
  def sampleBy[T](col: String, fractions: ju.Map[T, jl.Double], seed: Long): DataFrame = {
    sampleBy(col, fractions.asScala.toMap.asInstanceOf[Map[T, Double]], seed)
  }

  /**
   * Returns a stratified sample without replacement based on the fraction given on each stratum.
   * @param col column that defines strata
   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
   *                  its fraction as zero.
   * @param seed random seed
   * @tparam T stratum type
   * @return a new `DataFrame` that represents the stratified sample
   *
   * The stratified sample can be performed over multiple columns:
   * {{{
   *    import org.apache.spark.sql.Row
   *    import org.apache.spark.sql.functions.struct
   *
   *    val df = spark.createDataFrame(Seq(("Bob", 17), ("Alice", 10), ("Nico", 8), ("Bob", 17),
   *      ("Alice", 10))).toDF("name", "age")
   *    val fractions = Map(Row("Alice", 10) -> 0.3, Row("Nico", 8) -> 1.0)
   *    df.stat.sampleBy(struct($"name", $"age"), fractions, 36L).show()
   *    +-----+---+
   *    | name|age|
   *    +-----+---+
   *    | Nico|  8|
   *    |Alice| 10|
   *    +-----+---+
   * }}}
   *
   * @since 3.0.0
   */
  def sampleBy[T](col: Column, fractions: Map[T, Double], seed: Long): DataFrame = {
    require(fractions.values.forall(p => p >= 0.0 && p <= 1.0),
      s"Fractions must be in [0, 1], but got $fractions.")
    import org.apache.spark.sql.functions.{rand, udf}
    val r = rand(seed)
    val f = udf { (stratum: Any, x: Double) =>
      x < fractions.getOrElse(stratum.asInstanceOf[T], 0.0)
    }
    df.filter(f(col, r))
  }

  /**
   * (Java-specific) Returns a stratified sample without replacement based on the fraction given
   * on each stratum.
   * @param col column that defines strata
   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
   *                  its fraction as zero.
   * @param seed random seed
   * @tparam T stratum type
   * @return a new `DataFrame` that represents the stratified sample
   *
   * @since 3.0.0
   */
  def sampleBy[T](col: Column, fractions: ju.Map[T, jl.Double], seed: Long): DataFrame = {
    sampleBy(col, fractions.asScala.toMap.asInstanceOf[Map[T, Double]], seed)
  }

  /**
   * Builds a Count-min Sketch over a specified column.
   *
   * @param colName name of the column over which the sketch is built
   * @param depth depth of the sketch
   * @param width width of the sketch
   * @param seed random seed
   * @return a `CountMinSketch` over column `colName`
   * @since 2.0.0
   */
  def countMinSketch(colName: String, depth: Int, width: Int, seed: Int): CountMinSketch = {
    countMinSketch(Column(colName), depth, width, seed)
  }

  /**
   * Builds a Count-min Sketch over a specified column.
   *
   * @param colName name of the column over which the sketch is built
   * @param eps relative error of the sketch
   * @param confidence confidence of the sketch
   * @param seed random seed
   * @return a `CountMinSketch` over column `colName`
   * @since 2.0.0
   */
  def countMinSketch(
      colName: String, eps: Double, confidence: Double, seed: Int): CountMinSketch = {
    countMinSketch(Column(colName), eps, confidence, seed)
  }

  /**
   * Builds a Count-min Sketch over a specified column.
   *
   * @param col the column over which the sketch is built
   * @param depth depth of the sketch
   * @param width width of the sketch
   * @param seed random seed
   * @return a `CountMinSketch` over column `colName`
   * @since 2.0.0
   */
  def countMinSketch(col: Column, depth: Int, width: Int, seed: Int): CountMinSketch = {
    countMinSketch(col, CountMinSketch.create(depth, width, seed))
  }

  /**
   * Builds a Count-min Sketch over a specified column.
   *
   * @param col the column over which the sketch is built
   * @param eps relative error of the sketch
   * @param confidence confidence of the sketch
   * @param seed random seed
   * @return a `CountMinSketch` over column `colName`
   * @since 2.0.0
   */
  def countMinSketch(col: Column, eps: Double, confidence: Double, seed: Int): CountMinSketch = {
    countMinSketch(col, CountMinSketch.create(eps, confidence, seed))
  }

  private def countMinSketch(col: Column, zero: CountMinSketch): CountMinSketch = {
    val singleCol = df.select(col)
    val colType = singleCol.schema.head.dataType

    val updater: (CountMinSketch, InternalRow) => Unit = colType match {
      // For string type, we can get bytes of our `UTF8String` directly, and call the `addBinary`
      // instead of `addString` to avoid unnecessary conversion.
      case StringType => (sketch, row) => sketch.addBinary(row.getUTF8String(0).getBytes)
      case ByteType => (sketch, row) => sketch.addLong(row.getByte(0))
      case ShortType => (sketch, row) => sketch.addLong(row.getShort(0))
      case IntegerType => (sketch, row) => sketch.addLong(row.getInt(0))
      case LongType => (sketch, row) => sketch.addLong(row.getLong(0))
      case _ =>
        throw new IllegalArgumentException(
          s"Count-min Sketch only supports string type and integral types, " +
            s"and does not support type $colType."
        )
    }

    singleCol.queryExecution.toRdd.aggregate(zero)(
      (sketch: CountMinSketch, row: InternalRow) => {
        updater(sketch, row)
        sketch
      },
      (sketch1, sketch2) => sketch1.mergeInPlace(sketch2)
    )
  }

  /**
   * Builds a Bloom filter over a specified column.
   *
   * @param colName name of the column over which the filter is built
   * @param expectedNumItems expected number of items which will be put into the filter.
   * @param fpp expected false positive probability of the filter.
   * @since 2.0.0
   */
  def bloomFilter(colName: String, expectedNumItems: Long, fpp: Double): BloomFilter = {
    buildBloomFilter(Column(colName), expectedNumItems, -1L, fpp)
  }

  /**
   * Builds a Bloom filter over a specified column.
   *
   * @param col the column over which the filter is built
   * @param expectedNumItems expected number of items which will be put into the filter.
   * @param fpp expected false positive probability of the filter.
   * @since 2.0.0
   */
  def bloomFilter(col: Column, expectedNumItems: Long, fpp: Double): BloomFilter = {
    buildBloomFilter(col, expectedNumItems, -1L, fpp)
  }

  /**
   * Builds a Bloom filter over a specified column.
   *
   * @param colName name of the column over which the filter is built
   * @param expectedNumItems expected number of items which will be put into the filter.
   * @param numBits expected number of bits of the filter.
   * @since 2.0.0
   */
  def bloomFilter(colName: String, expectedNumItems: Long, numBits: Long): BloomFilter = {
    buildBloomFilter(Column(colName), expectedNumItems, numBits, Double.NaN)
  }

  /**
   * Builds a Bloom filter over a specified column.
   *
   * @param col the column over which the filter is built
   * @param expectedNumItems expected number of items which will be put into the filter.
   * @param numBits expected number of bits of the filter.
   * @since 2.0.0
   */
  def bloomFilter(col: Column, expectedNumItems: Long, numBits: Long): BloomFilter = {
    buildBloomFilter(col, expectedNumItems, numBits, Double.NaN)
  }

  private def buildBloomFilter(col: Column, expectedNumItems: Long,
                               numBits: Long,
                               fpp: Double): BloomFilter = {
    val singleCol = df.select(col)
    val colType = singleCol.schema.head.dataType

    require(colType == StringType || colType.isInstanceOf[IntegralType],
      s"Bloom filter only supports string type and integral types, but got $colType.")

    val updater: (BloomFilter, InternalRow) => Unit = colType match {
      // For string type, we can get bytes of our `UTF8String` directly, and call the `putBinary`
      // instead of `putString` to avoid unnecessary conversion.
      case StringType => (filter, row) => filter.putBinary(row.getUTF8String(0).getBytes)
      case ByteType => (filter, row) => filter.putLong(row.getByte(0))
      case ShortType => (filter, row) => filter.putLong(row.getShort(0))
      case IntegerType => (filter, row) => filter.putLong(row.getInt(0))
      case LongType => (filter, row) => filter.putLong(row.getLong(0))
      case _ =>
        throw new IllegalArgumentException(
          s"Bloom filter only supports string type and integral types, " +
            s"and does not support type $colType."
        )
    }

    singleCol.queryExecution.toRdd.treeAggregate(null.asInstanceOf[BloomFilter])(
      (filter: BloomFilter, row: InternalRow) => {
        val theFilter =
          if (filter == null) {
            if (fpp.isNaN) {
              BloomFilter.create(expectedNumItems, numBits)
            } else {
              BloomFilter.create(expectedNumItems, fpp)
            }
          } else {
            filter
          }
        updater(theFilter, row)
        theFilter
      },
      (filter1, filter2) => {
        if (filter1 == null) {
          filter2
        } else if (filter2 == null) {
          filter1
        } else {
          filter1.mergeInPlace(filter2)
        }
      }
    )
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy