org.apache.spark.sql.DataFrameWriterV2.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import scala.collection.JavaConverters._
import scala.collection.mutable
import org.apache.spark.annotation.Experimental
import org.apache.spark.sql.catalyst.analysis.{CannotReplaceMissingTableException, NoSuchTableException, TableAlreadyExistsException, UnresolvedIdentifier, UnresolvedRelation}
import org.apache.spark.sql.catalyst.expressions.{Attribute, Bucket, Days, Hours, Literal, Months, Years}
import org.apache.spark.sql.catalyst.plans.logical.{AppendData, CreateTableAsSelect, LogicalPlan, OptionList, OverwriteByExpression, OverwritePartitionsDynamic, ReplaceTableAsSelect, UnresolvedTableSpec}
import org.apache.spark.sql.connector.catalog.TableWritePrivilege._
import org.apache.spark.sql.connector.expressions.{LogicalExpressions, NamedReference, Transform}
import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.execution.QueryExecution
import org.apache.spark.sql.types.IntegerType
/**
* Interface used to write a [[org.apache.spark.sql.Dataset]] to external storage using the v2 API.
*
* @since 3.0.0
*/
@Experimental
final class DataFrameWriterV2[T] private[sql](table: String, ds: Dataset[T])
extends CreateTableWriter[T] {
private val df: DataFrame = ds.toDF()
private val sparkSession = ds.sparkSession
private val tableName = sparkSession.sessionState.sqlParser.parseMultipartIdentifier(table)
private val logicalPlan = df.queryExecution.logical
private var provider: Option[String] = None
private val options = new mutable.HashMap[String, String]()
private val properties = new mutable.HashMap[String, String]()
private var partitioning: Option[Seq[Transform]] = None
override def using(provider: String): CreateTableWriter[T] = {
this.provider = Some(provider)
this
}
override def option(key: String, value: String): DataFrameWriterV2[T] = {
this.options.put(key, value)
this
}
override def options(options: scala.collection.Map[String, String]): DataFrameWriterV2[T] = {
options.foreach {
case (key, value) =>
this.options.put(key, value)
}
this
}
override def options(options: java.util.Map[String, String]): DataFrameWriterV2[T] = {
this.options(options.asScala)
this
}
override def tableProperty(property: String, value: String): CreateTableWriter[T] = {
this.properties.put(property, value)
this
}
@scala.annotation.varargs
override def partitionedBy(column: Column, columns: Column*): CreateTableWriter[T] = {
def ref(name: String): NamedReference = LogicalExpressions.parseReference(name)
val asTransforms = (column +: columns).map(_.expr).map {
case Years(attr: Attribute) =>
LogicalExpressions.years(ref(attr.name))
case Months(attr: Attribute) =>
LogicalExpressions.months(ref(attr.name))
case Days(attr: Attribute) =>
LogicalExpressions.days(ref(attr.name))
case Hours(attr: Attribute) =>
LogicalExpressions.hours(ref(attr.name))
case Bucket(Literal(numBuckets: Int, IntegerType), attr: Attribute) =>
LogicalExpressions.bucket(numBuckets, Array(ref(attr.name)))
case attr: Attribute =>
LogicalExpressions.identity(ref(attr.name))
case expr =>
throw QueryCompilationErrors.invalidPartitionTransformationError(expr)
}
this.partitioning = Some(asTransforms)
this
}
override def create(): Unit = {
val tableSpec = UnresolvedTableSpec(
properties = properties.toMap,
provider = provider,
optionExpression = OptionList(Seq.empty),
location = None,
comment = None,
serde = None,
external = false)
runCommand(
CreateTableAsSelect(
UnresolvedIdentifier(tableName),
partitioning.getOrElse(Seq.empty),
logicalPlan,
tableSpec,
options.toMap,
false))
}
override def replace(): Unit = {
internalReplace(orCreate = false)
}
override def createOrReplace(): Unit = {
internalReplace(orCreate = true)
}
/**
* Append the contents of the data frame to the output table.
*
* If the output table does not exist, this operation will fail with
* [[org.apache.spark.sql.catalyst.analysis.NoSuchTableException]]. The data frame will be
* validated to ensure it is compatible with the existing table.
*
* @throws org.apache.spark.sql.catalyst.analysis.NoSuchTableException If the table does not exist
*/
@throws(classOf[NoSuchTableException])
def append(): Unit = {
val append = AppendData.byName(
UnresolvedRelation(tableName).requireWritePrivileges(Seq(INSERT)),
logicalPlan, options.toMap)
runCommand(append)
}
/**
* Overwrite rows matching the given filter condition with the contents of the data frame in
* the output table.
*
* If the output table does not exist, this operation will fail with
* [[org.apache.spark.sql.catalyst.analysis.NoSuchTableException]].
* The data frame will be validated to ensure it is compatible with the existing table.
*
* @throws org.apache.spark.sql.catalyst.analysis.NoSuchTableException If the table does not exist
*/
@throws(classOf[NoSuchTableException])
def overwrite(condition: Column): Unit = {
val overwrite = OverwriteByExpression.byName(
UnresolvedRelation(tableName).requireWritePrivileges(Seq(INSERT, DELETE)),
logicalPlan, condition.expr, options.toMap)
runCommand(overwrite)
}
/**
* Overwrite all partition for which the data frame contains at least one row with the contents
* of the data frame in the output table.
*
* This operation is equivalent to Hive's `INSERT OVERWRITE ... PARTITION`, which replaces
* partitions dynamically depending on the contents of the data frame.
*
* If the output table does not exist, this operation will fail with
* [[org.apache.spark.sql.catalyst.analysis.NoSuchTableException]]. The data frame will be
* validated to ensure it is compatible with the existing table.
*
* @throws org.apache.spark.sql.catalyst.analysis.NoSuchTableException If the table does not exist
*/
@throws(classOf[NoSuchTableException])
def overwritePartitions(): Unit = {
val dynamicOverwrite = OverwritePartitionsDynamic.byName(
UnresolvedRelation(tableName).requireWritePrivileges(Seq(INSERT, DELETE)),
logicalPlan, options.toMap)
runCommand(dynamicOverwrite)
}
/**
* Wrap an action to track the QueryExecution and time cost, then report to the user-registered
* callback functions.
*/
private def runCommand(command: LogicalPlan): Unit = {
val qe = new QueryExecution(sparkSession, command, df.queryExecution.tracker)
qe.assertCommandExecuted()
}
private def internalReplace(orCreate: Boolean): Unit = {
val tableSpec = UnresolvedTableSpec(
properties = properties.toMap,
provider = provider,
optionExpression = OptionList(Seq.empty),
location = None,
comment = None,
serde = None,
external = false)
runCommand(ReplaceTableAsSelect(
UnresolvedIdentifier(tableName),
partitioning.getOrElse(Seq.empty),
logicalPlan,
tableSpec,
writeOptions = options.toMap,
orCreate = orCreate))
}
}
/**
* Configuration methods common to create/replace operations and insert/overwrite operations.
* @tparam R builder type to return
* @since 3.0.0
*/
trait WriteConfigMethods[R] {
/**
* Add a write option.
*
* @since 3.0.0
*/
def option(key: String, value: String): R
/**
* Add a boolean output option.
*
* @since 3.0.0
*/
def option(key: String, value: Boolean): R = option(key, value.toString)
/**
* Add a long output option.
*
* @since 3.0.0
*/
def option(key: String, value: Long): R = option(key, value.toString)
/**
* Add a double output option.
*
* @since 3.0.0
*/
def option(key: String, value: Double): R = option(key, value.toString)
/**
* Add write options from a Scala Map.
*
* @since 3.0.0
*/
def options(options: scala.collection.Map[String, String]): R
/**
* Add write options from a Java Map.
*
* @since 3.0.0
*/
def options(options: java.util.Map[String, String]): R
}
/**
* Trait to restrict calls to create and replace operations.
*
* @since 3.0.0
*/
trait CreateTableWriter[T] extends WriteConfigMethods[CreateTableWriter[T]] {
/**
* Create a new table from the contents of the data frame.
*
* The new table's schema, partition layout, properties, and other configuration will be
* based on the configuration set on this writer.
*
* If the output table exists, this operation will fail with
* [[org.apache.spark.sql.catalyst.analysis.TableAlreadyExistsException]].
*
* @throws org.apache.spark.sql.catalyst.analysis.TableAlreadyExistsException
* If the table already exists
*/
@throws(classOf[TableAlreadyExistsException])
def create(): Unit
/**
* Replace an existing table with the contents of the data frame.
*
* The existing table's schema, partition layout, properties, and other configuration will be
* replaced with the contents of the data frame and the configuration set on this writer.
*
* If the output table does not exist, this operation will fail with
* [[org.apache.spark.sql.catalyst.analysis.CannotReplaceMissingTableException]].
*
* @throws org.apache.spark.sql.catalyst.analysis.CannotReplaceMissingTableException
* If the table does not exist
*/
@throws(classOf[CannotReplaceMissingTableException])
def replace(): Unit
/**
* Create a new table or replace an existing table with the contents of the data frame.
*
* The output table's schema, partition layout, properties, and other configuration will be based
* on the contents of the data frame and the configuration set on this writer. If the table
* exists, its configuration and data will be replaced.
*/
def createOrReplace(): Unit
/**
* Partition the output table created by `create`, `createOrReplace`, or `replace` using
* the given columns or transforms.
*
* When specified, the table data will be stored by these values for efficient reads.
*
* For example, when a table is partitioned by day, it may be stored in a directory layout like:
*
* - `table/day=2019-06-01/`
* - `table/day=2019-06-02/`
*
*
* Partitioning is one of the most widely used techniques to optimize physical data layout.
* It provides a coarse-grained index for skipping unnecessary data reads when queries have
* predicates on the partitioned columns. In order for partitioning to work well, the number
* of distinct values in each column should typically be less than tens of thousands.
*
* @since 3.0.0
*/
def partitionedBy(column: Column, columns: Column*): CreateTableWriter[T]
/**
* Specifies a provider for the underlying output data source. Spark's default catalog supports
* "parquet", "json", etc.
*
* @since 3.0.0
*/
def using(provider: String): CreateTableWriter[T]
/**
* Add a table property.
*/
def tableProperty(property: String, value: String): CreateTableWriter[T]
}