org.apache.spark.sql.UDFRegistration.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import java.lang.reflect.ParameterizedType
import scala.reflect.runtime.universe.TypeTag
import scala.util.Try
import org.apache.spark.annotation.Stable
import org.apache.spark.api.python.PythonEvalType
import org.apache.spark.internal.Logging
import org.apache.spark.sql.api.java._
import org.apache.spark.sql.catalyst.{JavaTypeInference, ScalaReflection}
import org.apache.spark.sql.catalyst.analysis.FunctionRegistry
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.catalyst.expressions.{Expression, ScalaUDF}
import org.apache.spark.sql.catalyst.util.CharVarcharUtils
import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.execution.aggregate.ScalaUDAF
import org.apache.spark.sql.execution.python.UserDefinedPythonFunction
import org.apache.spark.sql.expressions.{SparkUserDefinedFunction, UserDefinedAggregateFunction, UserDefinedAggregator, UserDefinedFunction}
import org.apache.spark.sql.types.DataType
import org.apache.spark.util.Utils
/**
* Functions for registering user-defined functions. Use `SparkSession.udf` to access this:
*
* {{{
* spark.udf
* }}}
*
* @since 1.3.0
*/
@Stable
class UDFRegistration private[sql] (functionRegistry: FunctionRegistry) extends Logging {
import UDFRegistration._
protected[sql] def registerPython(name: String, udf: UserDefinedPythonFunction): Unit = {
log.debug(
s"""
| Registering new PythonUDF:
| name: $name
| command: ${udf.func.command}
| envVars: ${udf.func.envVars}
| pythonIncludes: ${udf.func.pythonIncludes}
| pythonExec: ${udf.func.pythonExec}
| dataType: ${udf.dataType}
| pythonEvalType: ${PythonEvalType.toString(udf.pythonEvalType)}
| udfDeterministic: ${udf.udfDeterministic}
""".stripMargin)
functionRegistry.createOrReplaceTempFunction(name, udf.builder, "python_udf")
}
/**
* Registers a user-defined aggregate function (UDAF).
*
* @param name the name of the UDAF.
* @param udaf the UDAF needs to be registered.
* @return the registered UDAF.
*
* @since 1.5.0
* @deprecated this method and the use of UserDefinedAggregateFunction are deprecated.
* Aggregator[IN, BUF, OUT] should now be registered as a UDF via the functions.udaf(agg) method.
*/
@deprecated("Aggregator[IN, BUF, OUT] should now be registered as a UDF" +
" via the functions.udaf(agg) method.", "3.0.0")
def register(name: String, udaf: UserDefinedAggregateFunction): UserDefinedAggregateFunction = {
def builder(children: Seq[Expression]) = ScalaUDAF(children, udaf, udafName = Some(name))
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
udaf
}
/**
* Registers a user-defined function (UDF), for a UDF that's already defined using the Dataset
* API (i.e. of type UserDefinedFunction). To change a UDF to nondeterministic, call the API
* `UserDefinedFunction.asNondeterministic()`. To change a UDF to nonNullable, call the API
* `UserDefinedFunction.asNonNullable()`.
*
* Example:
* {{{
* val foo = udf(() => Math.random())
* spark.udf.register("random", foo.asNondeterministic())
*
* val bar = udf(() => "bar")
* spark.udf.register("stringLit", bar.asNonNullable())
* }}}
*
* @param name the name of the UDF.
* @param udf the UDF needs to be registered.
* @return the registered UDF.
*
* @since 2.2.0
*/
def register(name: String, udf: UserDefinedFunction): UserDefinedFunction = {
udf.withName(name) match {
case udaf: UserDefinedAggregator[_, _, _] =>
def builder(children: Seq[Expression]) = udaf.scalaAggregator(children)
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
udaf
case other =>
def builder(children: Seq[Expression]) = other.apply(children.map(Column.apply) : _*).expr
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
other
}
}
// scalastyle:off line.size.limit
/* register 0-22 were generated by this script
(0 to 22).foreach { x =>
val types = (1 to x).foldRight("RT")((i, s) => {s"A$i, $s"})
val typeTags = (1 to x).map(i => s"A$i: TypeTag").foldLeft("RT: TypeTag")(_ + ", " + _)
val inputEncoders = (1 to x).foldRight("Nil")((i, s) => {s"Try(ExpressionEncoder[A$i]()).toOption :: $s"})
println(s"""
|/**
| * Registers a deterministic Scala closure of $x arguments as user-defined function (UDF).
| * @tparam RT return type of UDF.
| * @since 1.3.0
| */
|def register[$typeTags](name: String, func: Function$x[$types]): UserDefinedFunction = {
| val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
| val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
| val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = $inputEncoders
| val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
| val finalUdf = if (nullable) udf else udf.asNonNullable()
| def builder(e: Seq[Expression]) = if (e.length == $x) {
| finalUdf.createScalaUDF(e)
| } else {
| throw QueryCompilationErrors.wrongNumArgsError(name, "$x", e.length)
| }
| functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
| finalUdf
|}""".stripMargin)
}
(0 to 22).foreach { i =>
val extTypeArgs = (0 to i).map(_ => "_").mkString(", ")
val anyTypeArgs = (0 to i).map(_ => "Any").mkString(", ")
val anyCast = s".asInstanceOf[UDF$i[$anyTypeArgs]]"
val anyParams = (1 to i).map(_ => "_: Any").mkString(", ")
val version = if (i == 0) "2.3.0" else "1.3.0"
val funcCall = if (i == 0) s"() => f$anyCast.call($anyParams)" else s"f$anyCast.call($anyParams)"
println(s"""
|/**
| * Register a deterministic Java UDF$i instance as user-defined function (UDF).
| * @since $version
| */
|def register(name: String, f: UDF$i[$extTypeArgs], returnType: DataType): Unit = {
| val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
| val func = $funcCall
| def builder(e: Seq[Expression]) = if (e.length == $i) {
| ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
| } else {
| throw QueryCompilationErrors.wrongNumArgsError(name, "$i", e.length)
| }
| functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
|}""".stripMargin)
}
*/
/**
* Registers a deterministic Scala closure of 0 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag](name: String, func: Function0[RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 0) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "0", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 1 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag](name: String, func: Function1[A1, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 1) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "1", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 2 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag](name: String, func: Function2[A1, A2, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 2) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "2", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 3 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag](name: String, func: Function3[A1, A2, A3, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 3) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "3", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 4 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag](name: String, func: Function4[A1, A2, A3, A4, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 4) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "4", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 5 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag](name: String, func: Function5[A1, A2, A3, A4, A5, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 5) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "5", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 6 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag](name: String, func: Function6[A1, A2, A3, A4, A5, A6, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 6) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "6", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 7 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag](name: String, func: Function7[A1, A2, A3, A4, A5, A6, A7, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 7) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "7", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 8 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag](name: String, func: Function8[A1, A2, A3, A4, A5, A6, A7, A8, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 8) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "8", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 9 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag](name: String, func: Function9[A1, A2, A3, A4, A5, A6, A7, A8, A9, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 9) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "9", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 10 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag](name: String, func: Function10[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 10) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "10", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 11 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag](name: String, func: Function11[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 11) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "11", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 12 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag](name: String, func: Function12[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 12) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "12", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 13 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag](name: String, func: Function13[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 13) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "13", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 14 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag](name: String, func: Function14[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 14) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "14", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 15 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag, A15: TypeTag](name: String, func: Function15[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Try(ExpressionEncoder[A15]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 15) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "15", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 16 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag, A15: TypeTag, A16: TypeTag](name: String, func: Function16[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Try(ExpressionEncoder[A15]()).toOption :: Try(ExpressionEncoder[A16]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 16) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "16", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 17 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag, A15: TypeTag, A16: TypeTag, A17: TypeTag](name: String, func: Function17[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Try(ExpressionEncoder[A15]()).toOption :: Try(ExpressionEncoder[A16]()).toOption :: Try(ExpressionEncoder[A17]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 17) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "17", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 18 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag, A15: TypeTag, A16: TypeTag, A17: TypeTag, A18: TypeTag](name: String, func: Function18[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Try(ExpressionEncoder[A15]()).toOption :: Try(ExpressionEncoder[A16]()).toOption :: Try(ExpressionEncoder[A17]()).toOption :: Try(ExpressionEncoder[A18]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 18) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "18", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 19 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag, A15: TypeTag, A16: TypeTag, A17: TypeTag, A18: TypeTag, A19: TypeTag](name: String, func: Function19[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Try(ExpressionEncoder[A15]()).toOption :: Try(ExpressionEncoder[A16]()).toOption :: Try(ExpressionEncoder[A17]()).toOption :: Try(ExpressionEncoder[A18]()).toOption :: Try(ExpressionEncoder[A19]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 19) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "19", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 20 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag, A15: TypeTag, A16: TypeTag, A17: TypeTag, A18: TypeTag, A19: TypeTag, A20: TypeTag](name: String, func: Function20[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Try(ExpressionEncoder[A15]()).toOption :: Try(ExpressionEncoder[A16]()).toOption :: Try(ExpressionEncoder[A17]()).toOption :: Try(ExpressionEncoder[A18]()).toOption :: Try(ExpressionEncoder[A19]()).toOption :: Try(ExpressionEncoder[A20]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 20) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "20", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 21 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag, A15: TypeTag, A16: TypeTag, A17: TypeTag, A18: TypeTag, A19: TypeTag, A20: TypeTag, A21: TypeTag](name: String, func: Function21[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Try(ExpressionEncoder[A15]()).toOption :: Try(ExpressionEncoder[A16]()).toOption :: Try(ExpressionEncoder[A17]()).toOption :: Try(ExpressionEncoder[A18]()).toOption :: Try(ExpressionEncoder[A19]()).toOption :: Try(ExpressionEncoder[A20]()).toOption :: Try(ExpressionEncoder[A21]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 21) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "21", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
/**
* Registers a deterministic Scala closure of 22 arguments as user-defined function (UDF).
* @tparam RT return type of UDF.
* @since 1.3.0
*/
def register[RT: TypeTag, A1: TypeTag, A2: TypeTag, A3: TypeTag, A4: TypeTag, A5: TypeTag, A6: TypeTag, A7: TypeTag, A8: TypeTag, A9: TypeTag, A10: TypeTag, A11: TypeTag, A12: TypeTag, A13: TypeTag, A14: TypeTag, A15: TypeTag, A16: TypeTag, A17: TypeTag, A18: TypeTag, A19: TypeTag, A20: TypeTag, A21: TypeTag, A22: TypeTag](name: String, func: Function22[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, RT]): UserDefinedFunction = {
val outputEncoder = Try(ExpressionEncoder[RT]()).toOption
val ScalaReflection.Schema(dataType, nullable) = outputEncoder.map(outputSchema).getOrElse(ScalaReflection.schemaFor[RT])
val inputEncoders: Seq[Option[ExpressionEncoder[_]]] = Try(ExpressionEncoder[A1]()).toOption :: Try(ExpressionEncoder[A2]()).toOption :: Try(ExpressionEncoder[A3]()).toOption :: Try(ExpressionEncoder[A4]()).toOption :: Try(ExpressionEncoder[A5]()).toOption :: Try(ExpressionEncoder[A6]()).toOption :: Try(ExpressionEncoder[A7]()).toOption :: Try(ExpressionEncoder[A8]()).toOption :: Try(ExpressionEncoder[A9]()).toOption :: Try(ExpressionEncoder[A10]()).toOption :: Try(ExpressionEncoder[A11]()).toOption :: Try(ExpressionEncoder[A12]()).toOption :: Try(ExpressionEncoder[A13]()).toOption :: Try(ExpressionEncoder[A14]()).toOption :: Try(ExpressionEncoder[A15]()).toOption :: Try(ExpressionEncoder[A16]()).toOption :: Try(ExpressionEncoder[A17]()).toOption :: Try(ExpressionEncoder[A18]()).toOption :: Try(ExpressionEncoder[A19]()).toOption :: Try(ExpressionEncoder[A20]()).toOption :: Try(ExpressionEncoder[A21]()).toOption :: Try(ExpressionEncoder[A22]()).toOption :: Nil
val udf = SparkUserDefinedFunction(func, dataType, inputEncoders, outputEncoder).withName(name)
val finalUdf = if (nullable) udf else udf.asNonNullable()
def builder(e: Seq[Expression]) = if (e.length == 22) {
finalUdf.createScalaUDF(e)
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "22", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "scala_udf")
finalUdf
}
//////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////
/**
* Register a Java UDF class using reflection, for use from pyspark
*
* @param name udf name
* @param className fully qualified class name of udf
* @param returnDataType return type of udf. If it is null, spark would try to infer
* via reflection.
*/
private[sql] def registerJava(name: String, className: String, returnDataType: DataType): Unit = {
try {
val clazz = Utils.classForName[AnyRef](className)
val udfInterfaces = clazz.getGenericInterfaces
.filter(_.isInstanceOf[ParameterizedType])
.map(_.asInstanceOf[ParameterizedType])
.filter(e => e.getRawType.isInstanceOf[Class[_]] && e.getRawType.asInstanceOf[Class[_]].getCanonicalName.startsWith("org.apache.spark.sql.api.java.UDF"))
if (udfInterfaces.length == 0) {
throw QueryCompilationErrors.udfClassDoesNotImplementAnyUDFInterfaceError(className)
} else if (udfInterfaces.length > 1) {
throw QueryCompilationErrors.udfClassImplementMultiUDFInterfacesError(className)
} else {
try {
val udf = clazz.getConstructor().newInstance()
val udfReturnType = udfInterfaces(0).getActualTypeArguments.last
var returnType = returnDataType
if (returnType == null) {
returnType = JavaTypeInference.inferDataType(udfReturnType)._1
}
udfInterfaces(0).getActualTypeArguments.length match {
case 1 => register(name, udf.asInstanceOf[UDF0[_]], returnType)
case 2 => register(name, udf.asInstanceOf[UDF1[_, _]], returnType)
case 3 => register(name, udf.asInstanceOf[UDF2[_, _, _]], returnType)
case 4 => register(name, udf.asInstanceOf[UDF3[_, _, _, _]], returnType)
case 5 => register(name, udf.asInstanceOf[UDF4[_, _, _, _, _]], returnType)
case 6 => register(name, udf.asInstanceOf[UDF5[_, _, _, _, _, _]], returnType)
case 7 => register(name, udf.asInstanceOf[UDF6[_, _, _, _, _, _, _]], returnType)
case 8 => register(name, udf.asInstanceOf[UDF7[_, _, _, _, _, _, _, _]], returnType)
case 9 => register(name, udf.asInstanceOf[UDF8[_, _, _, _, _, _, _, _, _]], returnType)
case 10 => register(name, udf.asInstanceOf[UDF9[_, _, _, _, _, _, _, _, _, _]], returnType)
case 11 => register(name, udf.asInstanceOf[UDF10[_, _, _, _, _, _, _, _, _, _, _]], returnType)
case 12 => register(name, udf.asInstanceOf[UDF11[_, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 13 => register(name, udf.asInstanceOf[UDF12[_, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 14 => register(name, udf.asInstanceOf[UDF13[_, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 15 => register(name, udf.asInstanceOf[UDF14[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 16 => register(name, udf.asInstanceOf[UDF15[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 17 => register(name, udf.asInstanceOf[UDF16[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 18 => register(name, udf.asInstanceOf[UDF17[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 19 => register(name, udf.asInstanceOf[UDF18[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 20 => register(name, udf.asInstanceOf[UDF19[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 21 => register(name, udf.asInstanceOf[UDF20[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 22 => register(name, udf.asInstanceOf[UDF21[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case 23 => register(name, udf.asInstanceOf[UDF22[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _]], returnType)
case n =>
throw QueryCompilationErrors.udfClassWithTooManyTypeArgumentsError(n)
}
} catch {
case e @ (_: InstantiationException | _: IllegalArgumentException) =>
throw QueryCompilationErrors.classWithoutPublicNonArgumentConstructorError(className)
}
}
} catch {
case e: ClassNotFoundException => throw QueryCompilationErrors.cannotLoadClassNotOnClassPathError(className)
}
}
/**
* Register a Java UDAF class using reflection, for use from pyspark
*
* @param name UDAF name
* @param className fully qualified class name of UDAF
*/
private[sql] def registerJavaUDAF(name: String, className: String): Unit = {
try {
val clazz = Utils.classForName[AnyRef](className)
if (!classOf[UserDefinedAggregateFunction].isAssignableFrom(clazz)) {
throw QueryCompilationErrors.classDoesNotImplementUserDefinedAggregateFunctionError(className)
}
val udaf = clazz.getConstructor().newInstance().asInstanceOf[UserDefinedAggregateFunction]
register(name, udaf)
} catch {
case e: ClassNotFoundException => throw QueryCompilationErrors.cannotLoadClassNotOnClassPathError(className)
case e @ (_: InstantiationException | _: IllegalArgumentException) =>
throw QueryCompilationErrors.classWithoutPublicNonArgumentConstructorError(className)
}
}
/**
* Register a deterministic Java UDF0 instance as user-defined function (UDF).
* @since 2.3.0
*/
def register(name: String, f: UDF0[_], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = () => f.asInstanceOf[UDF0[Any]].call()
def builder(e: Seq[Expression]) = if (e.length == 0) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "0", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF1 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF1[_, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF1[Any, Any]].call(_: Any)
def builder(e: Seq[Expression]) = if (e.length == 1) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "1", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF2 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF2[_, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF2[Any, Any, Any]].call(_: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 2) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "2", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF3 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF3[_, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF3[Any, Any, Any, Any]].call(_: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 3) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "3", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF4 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF4[_, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF4[Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 4) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "4", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF5 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF5[_, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF5[Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 5) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "5", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF6 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF6[_, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF6[Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 6) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "6", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF7 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF7[_, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF7[Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 7) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "7", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF8 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF8[_, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF8[Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 8) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "8", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF9 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF9[_, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF9[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 9) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "9", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF10 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF10[_, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF10[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 10) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "10", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF11 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF11[_, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF11[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 11) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "11", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF12 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF12[_, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF12[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 12) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "12", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF13 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF13[_, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF13[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 13) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "13", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF14 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF14[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF14[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 14) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "14", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF15 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF15[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF15[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 15) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "15", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF16 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF16[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF16[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 16) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "16", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF17 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF17[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF17[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 17) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "17", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF18 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF18[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF18[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 18) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "18", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF19 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF19[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF19[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 19) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "19", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF20 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF20[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF20[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 20) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "20", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF21 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF21[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF21[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 21) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "21", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
/**
* Register a deterministic Java UDF22 instance as user-defined function (UDF).
* @since 1.3.0
*/
def register(name: String, f: UDF22[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], returnType: DataType): Unit = {
val replaced = CharVarcharUtils.failIfHasCharVarchar(returnType)
val func = f.asInstanceOf[UDF22[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]].call(_: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any, _: Any)
def builder(e: Seq[Expression]) = if (e.length == 22) {
ScalaUDF(func, replaced, e, Nil, udfName = Some(name))
} else {
throw QueryCompilationErrors.wrongNumArgsError(name, "22", e.length)
}
functionRegistry.createOrReplaceTempFunction(name, builder, "java_udf")
}
// scalastyle:on line.size.limit
}
private[sql] object UDFRegistration {
/**
* Obtaining the schema of output encoder for `ScalaUDF`.
*
* As the serialization in `ScalaUDF` is for individual column, not the whole row,
* we just take the data type of vanilla object serializer, not `serializer` which
* is transformed somehow for top-level row.
*/
def outputSchema(outputEncoder: ExpressionEncoder[_]): ScalaReflection.Schema = {
ScalaReflection.Schema(outputEncoder.objSerializer.dataType,
outputEncoder.objSerializer.nullable)
}
}